

The use of Olive Mills Wastewater as a water replacement in concrete mixes

By Marwan Shuaibi 1205115

Master's Thesis

Submitted in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering in the Department of Civil and Environmental Engineering, Birzeit University, 2023

Birzeit, Palestine

Advisor:

Dr. Khalil Qatu

تقربر لجنة مناقشة رسالة الماجستير اسم الطالب/ة عرون عنامور تحمس الرقم الجامعي: 12051 and any not := : = !! عنوان رسالة الماجستير (باللغة العربية) : تحدم مخلفات عسر لمرتبون المائلة في الخلفان الخرائية عنوان رسالة الماجستير (باللغة الاتجليزية): The use of diversill waste when in concrete mike قرار اللجنة : لقد ناقش الطالب/ة المذكور أعلاه رسالته بتريخ ٢٠٢٩ م ٢٠٠٠ ، وقد كان تقدير الوسالة على النحو التالي : A ناجح ناجح بشرط التعديل راسب 0 وقد طلبت لجنة المناقشة التعديلات التالية: .1 .2 مريد مد مركم رئيس اللجنة (المشوف): حسام العصم التوقيع: عضو اللجنة: حمال المم التوقيع: معالم التاريخ : 2023 / 9/8 _ التري<u>خ 2 2 2 / 9</u> عضو اللجنة: فرا عاكد التوقيع:

نسخ/ دائرة التسجيل و القبول، العميد، البرنامج، المشرف، أعضاء اللجنة، الطالب/ة

AUTHOR DECLARATION

I declare that this Master's Thesis is my original work and does not comprise any formerly published material or written by another person except where due references have been made in the text and documented in the references list.

Signed:

Date:

Marwan Shuaibi

9/09/2023

ACKNOWLEDGMENT

I would like to express my gratitude to Dr. Khalil Qatu, my advisor, for all the guidance, support, and instruction he provided me through my master's studies, whose invaluable feedback and encouragement greatly influenced how I conducted my experiments and interpreted my findings.

I would further like to thank all Department of Civil and Environmental Engineering teachers for their support and teachings through my journey toward a master's degree.

I also would like to thank the Faculty of Graduate Studies for their financial support for this research.

DEDICATION

To my beloved mother, and my dead father, to my newborn son, Hamzeh, to my wife and the rest of my family that I am blessed with, and to my friends who supported me. To my country Palestine and all Palestinians everywhere, I dedicate this work

ABSTRACT

Environmental sustainability considered an important aspect facing the modern world. Different types of wastes are produced all over the world, therefore, enormous efforts are made to minimize the effect of those wastes on the environment, and so this became an active field of study for researchers. The use of wastes in concrete mixes is considered one of the methods that can be utilized to dispose of these wastes, especially since some researchers succeeded in using different types of wastes in concrete mixes while at the same time enhancing concrete characteristics.

In this research, the use of olive mill wastewater (OMWW) in concrete mixes is studied, testing if it can enhance concrete properties, and at the same time dispose of the OMWW which poses a threat to the environment due to its polluting effects.

Firstly, each component of the concrete mix (coarse aggregate, fine aggregate, water, and OMWW) is characterized. After that, different Concrete mixes are prepared by changing w/c ratio, water content, and OMWW replacement levels. The fresh and hardened concrete properties are then tested in the laboratory in accordance with (ASTM C109). X-ray diffraction and SEM images were also used in this research to evaluate the structure of the hardened concrete. Results show that the addition of OMWW to a concrete mix can increase its slump by (140% on average). And for a certain range of replacement (10% - 20%) and certain level of water content (8% - 10%), it enhances the compressive strength of concrete by an average of (5%). It is found that for around (20%) replacement level and water content higher than (10%), good results can be achieved by adding OMWW to a concrete mix, increasing the slump on a range between (90% - 200%) while approximately maintain strength results unchanged. concrete samples are also tested after (160 days) and an increase in the concrete is observed even for samples that contained up to (100%) OMWW replacement.

Finally, an ANN model was developed to predict the slump and compressive strength of the concrete mix for any selected W/C ratio, water content, and OMWW replacement percentage. Two additional mixes are prepared using the developed model. Results show that ANN was able to predict the properties (both slump and compressive strength) of the concrete mix for the range of w/c between (0.35 - 0.65) with excellent accuracy.

Keywords: OMWW, concrete mixes, SEM, X-ray diffraction, environmental sustainability, compressive strength.

V

List of Abbreviations

OMWW: Olive Mill Waste Water.

ANN: Artificial Neural Network.

ASTM: American Society for Testing and Materials.

SEM: Scanning Electron Microscopes.

W/C: Water / Cement

W%: Water Content as percentage of weight.

AI: Artificial Inelegance.

BP: Back Propagation.

C.A: Coarse Aggregates

F.A: Fine Aggregates

TABLE OF CONTENTS

CHAPT	PAGE PAGE					
CHAPT	ER ONE: INTRODUCTION	1				
1.1.	Background	1				
1.2.	Literature review:	2				
1.2.	1. OMWW Production:	2				
1.2.2	2. OMWW Composition:	3				
1.2.	3. OMWW Management:	6				
1.2.4	4. Artificial Neural Network (ANN):	8				
1.3.	Problem statement:	9				
1.4.	Objectives:	9				
CHAPT	ER TWO: METHODOLOGY					
CHAPT	ER THREE: RESULTS AND DISCUSSION					
3.1.	Raw material characterization:					
3.2.	Concrete mixes preparation:					
3.3.	Fresh concrete:					
3.4.	Hardened concrete:	24				
3.5.	Time effect on strength:					
3.6.	Cementitious cubes:					
3.7.	Scanning electron microscope (SEM) and X-ray diffraction:					
3.8.	Artificial Neural Network (ANN):					
CHAPT	ER FOUR: CONCLUSIONS AND RECOMMENDATIONS					
REFERI	ENCES					

Table of Figures

Figure 1: Olive oil extracting methods: a) traditional method, b) three-phase centrifugal extraction, c)
two-phase centrifugal extraction. (Cassano et al., 2016)
Figure 2: Three-phase centrifugal extraction processes
Figure 3: Typical ANN Model Structure9
Figure 4: Concrete cubes crushing machine
Figure 5: sand and gravel used in the concrete mixes
Figure 6: Grain Size Distribution for Coarse Aggregates
Figure 7: Grain Size Distribution for fine Aggregates14
Figure 8: Preparation of sand and gravel samples for absorption testing15
Figure 9: Obtaining process of raw OMWW16
Figure 10: OMWW replacement ratio vs. chloride level in different selected mixes
Figure 11: Concrete mix material preparation for mixing
Figure 12: OMWW (as a percentage of total water content) VS. Slump20
Figure 13: Concrete mix A, with 8% water content, and zero slump21
Figure 14: Concrete mix B, 12% water content, 0% OMWW, and 11.0cm slump21
Figure 15: Concrete mix B, 40% OMWW, and 24.5cm slump22
Figure 16: Concrete mix C, 10% water content, 0% OMWW, and 4.5cm slump22
Figure 17: Concrete mix C, 10% OMWW, and 11.5cm slump23
Figure 18: Concrete mix C, 80% OMWW, and 24cm slump23
Figure 19: Cubes preparation and filling24
Figure 20: w/c vs. concrete strength at 28 days age for control concrete mixes (0% OMWW)25
Figure 21: Concrete crushing machine and crushed cube25
Figure 22: Relationship between OMWW% as a replacement of total water and concrete strength for Mix
A at different ages
Figure 23: Crushed cube with a high level of OMWW%
Figure 24: Relationship between OMWW% as a replacement of total water and concrete strength for Mix
B at different ages
Figure 25: Relationship between OMWW% as a replacement of total water and concrete strength for Mix
C at different ages
Figure 26: Relationship between OMWW% as a replacement of total water and concrete strength for Mix
D at different ages

Figure 27: Relationship between OMWW% as a replacement of total water and concrete strength for the
same water content
Figure 28: Relationship between OMWW% as a replacement of total water and concrete strength for the
same w/c at a different water content
Figure 29: Relationship between OMWW% as a replacement of total water and concrete strength for
cement and OMWW cubes at 28 days age
Figure 30: Relationship between OMWW% as a replacement of total water and density
Figure 31: X-ray diffraction for all samples
Figure 32: X-ray diffraction and SEM for sample No.1 (0% OMWW replacement)
Figure 33: X-ray diffraction and SEM for sample No.3 (20% OMWW replacement)
Figure 34: X-ray diffraction and SEM for sample No.7 (100% OMWW replacement)35
Figure 35: X-ray diffraction and SEM for sample No.B (0% OMWW replacement)
Figure 36: X-ray diffraction and SEM for sample No.U (20% OMWW replacement)
Figure 37: X-ray diffraction and SEM for sample No.G (100% OMWW replacement)36
Figure 38: X-ray diffraction and SEM for sample No.H (0% OMWW replacement)37
Figure 39: X-ray diffraction and SEM for sample No.J (20% OMWW replacement)
Figure 40: X-ray diffraction and SEM for sample No.N (100% OMWW replacement)38
Figure 41: X-ray diffraction and SEM for sample No.O (0% OMWW replacement)
Figure 42: X-ray diffraction and SEM for sample No.R (20% OMWW replacement)
Figure 43: X-ray diffraction and SEM for sample No.X (100% OMWW replacement)
Figure 44: Amounts of phases and elements (weight %) for sample no. H
Figure 45: Amounts of phases and elements (weight %) for sample no. J
Figure 46: Amounts of phases and elements (weight %) for sample no. N
Figure 47: Plot between actual slump and slump predicted by the ANN model with OMWW replacement.
Figure 48: Plot between actual strength and strength predicted by the ANN model with OMWW
replacement
Figure 49: Relationship between OMWW% and strength predicted by ANN and from lab testing for w/c
=0.35 and 8% water content
Figure 50: Relationship between OMWW% and strength predicted by ANN and from lab testing for w/c
=0.5 and 10% water content

Figure 51: Relationship between OMWW% and strength predicted by ANN and from lab testing for w/c
=0.65 and 10% and 12% water content
Figure 52: Relationship between OMWW% and strength predicted by ANN for $w/c = 0.35$ with different
water contents
Figure 53: Relationship between OMWW% and strength predicted by ANN for $w/c = 0.5$ with different
water contents
Figure 54: Relationship between OMWW% and strength predicted by ANN for $w/c = 0.65$ with different
water contents
Figure 55: OMWW replacement level vs. water content level for $w/c = 0.50$, A) shows the relationship
for strength, B) shows the relationship for the slump, and C) shows the relationship for both49

Table of Tables

Table 1: a) Chemical characteristics of OMWW and fresh water, b) Chemical characteristics of OMWW	V
from different sources in Palestine	4
Table 2: Summary of different components and their effect on concrete mixes	5
Table 3: Proposed Mixes	11
Table 4: Aggregates properties and characteristics	14
Table 5: Chemical characteristics of Fresh OMWW, Old (Sedimented) OMWW, and fresh water	16
Table 6: Mixes Contents and Ratios	18
Table 7: Water content and slump for different W/C ratios	19
Table 8: Selected mixes for SEM images and X-ray diffraction	32
Table 9: ANN model mixes expected slump and strength	44
Table 10: ANN mixes testing results	44

CHAPTER ONE: INTRODUCTION

1.1. Background

Preservation of environment considered one of the main and difficult challenges facing the world in the past few decades. Most countries allocate a substantial portion of their budgets and enforce laws to minimize environmental hazards and threats. Untreated wastes poses a serious threat to the environment due to their negative impact on the environment and human lives (Ekins & Zenghelis, 2021), moreover, and due to rapid population growth in the modern world, which led to an increase in the amounts and types of produced wastes. The lack of proper methods and strict regulations to properly get rid of these wastes will have a catastrophic impact on the environment (Batayneh et al., 2007).

Third World countries suffer the most from the negative impact of produced wastes. This is due to the lack of strict laws and their poor financial capabilities that can help to nullify the negative effects of these wastes on the environment and human. However, studying waste types and composition can lead to new or more economically feasible methods to treat or reduce the negative effects of these wastes.

Many researchers studied the possibility of using different types of waste in concrete mixes, such as construction wastes (glass, plastic, and demolished concrete), which have been added successfully to concrete mixes to replace up to (20%) of the aggregates used in these mixes (Batayneh et al., 2007). Fly ash has also been successfully added to fresh concrete, replacing (15-35 %) of cement, increasing strength, and sulfate resistance, decreasing permeability, and improving workability (Badur& Chaudhary, 2008). Said A. and Quiroz O. (2018) have shown that using recycled latex paint in concrete mixes can produce superior concrete in terms of strength, while at the same time safely disposing of this harmful and hazardous waste.

In this study, Olive Mills Wastewater (OMWW) is studied. OMWW is one of the byproducts of olive oil production during the harvesting season between October and December each year. Currently, there are several efforts to effectively dispose of that waste using evaporation ponds for example, which despite its low cost and easy implementation aspects, this method reduces the amount of water and maintains the toxicity level of (OMWW), it also has some drawbacks such as attracting insects or producing unpleasant odors (Slama et al., 2021).

There can be two significant benefits of conducting such a study on using (OMWW):

- a) Environmental sustainability benefits: getting rid of such waste relieves nature from receiving it.
- b) Economic benefits: results of the study will refer to the optimal mixing ratios and resulting properties enhancements on the fresh concrete, though replacing the quantity of the superplasticizers added to the concrete mix might result in reducing the overall cost of the fresh concrete.

1.2. Literature review:

1.2.1.OMWW Production:

Currently, there are three methods of excavating olive oil, named: traditional; carried out through olive pulp pressing and filtrate centrifugation, and continuous; carried out through direct centrifugation (two-phase or three-phase centrifugal extraction)", as summarized in Figure 1.

Figure 2 depicts three-phase centrifugal extraction processes. This olive oil extraction method is used in many countries in the Mediterranean area (Zbakh & El Abbassi, 2012). Their study found that the oil extraction process yields more than (50%) of (OMWW) around (20%) of oil, and (30%) of solid wastes.

Figure 1: Olive oil extracting methods: a) traditional method, b) three-phase centrifugal extraction, c) two-phase centrifugal extraction. (Cassano et al., 2016)

In Palestine, according to The Palestinian Central Bureau of Statistics (2019), there were around (285) working olive oil mills, which received around (177611 tons) of olive beans in that year, producing (39610 tons) of olive oil (yielding around (22.3%) oil from collected beans), and according to Figure 1, the amount of wastewater produced during the process can be estimated to be around (180,000 to 200,000 m³).

Figure 2: Three-phase centrifugal extraction processes.

1.2.2. OMWW Composition:

The characteristics and properties of the produced (OMWW) depend on the method used to produce olive oil, olive bean storing time, the season of harvesting, type and location of the olive trees, method of harvesting and storing olive beans, and used agricultural or caring techniques. Chemical characteristics were found in Lennartz et al. (2013) and Tamimi studies are shown in Table 1.

Parameter	OMWW – Jordan	OMWW – Bait Reema	OMWW - Revivim	Fresh Water
РН	5.07	4.6	4.6	7.60
Conductivity (MicroS/cm)	9750	10800	9900	1010
Dry matter (g l ⁻¹)	33.25	53	88	
*Organic content (g l ⁻¹)	30.57	26	32	
*Potassium (K) (ppm)	1050.9	5290	3700	6.75
*Chloride (ppm)	763.8	1278	1200	82
*Sulfates (SO4) (ppm)	174.48	158	130	54.90
*Nitrates (NO3) (ppm)	1.19	Not stated	Not stated	1.11
Sodium (Na) (ppm)	128.8	105	440	50.70
*Calcium (Ca) (ppm)	137.5	252	203	51.80
Specific Weight	1.03	Not stated	Not stated	

Table 1: Chemical characteristics of OMWW and fresh water from different sources

Generally, studies show that as the cement pastes contain less alkalies, more shrinkage will occur, and the more the acidity level of the mix, the concrete will show disintegration and surface damage (Smaoui et al., 2005). Knowing that Portland cement pH level is 12, the pH level of the water is part of the total pH level of the mix, however, the final pH level of the mix will be alternated by the chemical reactions between the cement and water. (Smaoui et al., 2005), have shown that adding alkaline water to the mix increases the porosity of the mix and tend to reduce its final strength. Several experimental studies showed that the higher the alkali content in the cement itself, the lower the ultimate strength when tested in the lab. Moreover, higher alkali content in cement is directly responsible for accelerating the strength development in the short term (early strength) but decreases the ultimate (final, long term) strength. Kucche et al. (2015) have shown that the rate of corrosion is higher for water with a pH lower than 3.0, and there was a reduction in the compressive strength and split tensile strength of concrete with the reduction in the value of the pH level of water. Organic matter in the OMWW is one of the most noticeable elements found in OMWW, this has referred to by other studies, tends to delay hydration, extend setting time, and decrease

compressive strength increase shrinkage strain. Beddaa et al. (2019) stated that organic matter tends to delay the hydration process of the cement paste, and negatively affects strength development, especially at early ages, it also increases the setting times. Yang et al. (2018) also found that the increase of organic materials in the concrete mixes increases the porosity and decreases the compressive strength.

High chloride levels in concrete mixes can increase steel corrosion levels, this is related to the high alkali environment creating a protective film around the reinforcing steel bars, and the attack of chloride ions weakens or destroys that protecting film (Salih, 2012). Wang et. al. (2013) found that the passive coat protecting the steel was destroyed after a certain level of chloride (0.5 M), and localized corrosion was noticed at steel bars surface. ASTM C1602 limits the chloride levels between (500 ppm-1000 ppm), however, it sets no limits for concrete not containing reinforcing steel.

Potassium and Calcium are related to early strength development in concrete mixes that is due to that these two components react with the calcium hydroxide existing on the cement paste, increasing the solid ratio in the solution, and thus improving the early strength of the mix. Nitrates also tend to accelerate the hydration process of the cement thus increasing early strength development and preventing initial frost damage (Yoneyama et al., 2021).

Sulfates tend to reduce the cohesion of the cement paste, thus reducing the final strength of the concrete mix (Sabri Saleh, 2017). ASTM C1602 limits sulfate levels up to (3000 ppm). While sodium with certain ratios (between 2-6%) can increase the strength of the concrete and the early strength development (Oladapo and Ekanem, 2014), however, after that ratio, the strength tends to decrease compared to that between these recommended levels.

Table 2 summarizes the effect of each component on the concrete mix.

Table 2: Summary of different components and their effect on concrete mixes

Component	Effect
	With less alkalies, more surface shrinkage will occur.
pH level	Adding alkaline water to the mix increases the porosity of the mix and decreases its strength.

	The rate of corrosion is higher for water with a pH lower		
	than 3.0, a reduction in the compressive strength and split		
	tensile strength of concrete.		
	Tends to delay hydration, extend setting time, and decrease		
Organic matter	compressive strength increase shrinkage strain.		
o i gunte mutter	Increases the porosity.		
Chloride	Increase steel corrosion levels.		
Potassium and Calcium	Improves early strength development.		
	Accelerate the hydration process of the cement.		
Nitrates	Increasing early strength development and preventing initial		
	frost damage.		
	Reduce the cohesion of the cement paste.		
Sulfates	Reducing the final strength of the concrete mix.		
	Can increase the strength of the concrete and the early		
Sodium	strength development.		

From the above table, it is expected that the compressive strength of the concrete mixes to be reduced as OMWW% increases in the concrete mix due to the presence of material that tends to decrease the overall strength of the mix.

1.2.3.OMWW Management:

OMWW management is considered a complex problem, and due to that, no single solution can be given to safely treat and dispose of that wastewater. However, current OMWW management methods can be generally categorized into four main categories (Cassano et al., 2016; Zagklis et al., 2013).

- 1. Disposal; examples such as a direct application on soil, evaporation using evaporation pools, and solar distillation.
- Physicochemical; examples such as Membrane filtration include technology such as microfiltration, ultrafiltration, nano-filtration, and reverse osmosis for the fractionation of compounds from liquid solutions.
- 3. Biological; examples such as anaerobic digestion, aerobic treatments, bio treatments,

4. Advanced oxidation methods; examples such as oxidation and advanced oxidation processes, ozonation, and electrocoagulation.

A combined physicochemical and biological system can guarantee high efficiency in terms of pollution control, also, and as the method of treatment changes, so does the cost of the treatment. In general, the cost of treating one cubic meter of OMWW equals the treatment of (200 m³) of domestic sewage (Tsagaraki et al., 2007).

In Palestine, (OMWW) current management method is the disposal method, by simply collecting that waste in underground tanks inside olive mills and later discharging it to streams (Wadi) so that it is absorbed by the soils. This disposable method is forbidden in some Mediterranean countries (Hadrami H., 2009), as it poses a threat to the local environment due to its polluting effect on the soil and groundwater at the same time, however, this disposable method has the lowest direct cost. Conidi C. et al. (2016) and Hassani et al. (2020) state that (OMWW) imposes a great impact on the environment due to their high phytotoxic level due to the activity of phenolic compounds exist in the olive fruit (olive fruit is very rich in phenolic compounds, around 53% of the fruit content of phenolic compounds passes to the wastewater, (Hanaa and Abdelilah,2012), along with the high concentration of organic matter.

Due to composition, the OMWW contains a high level of organic content, caused by phenolic compounds responsible for the antimicrobial and antioxidant activity of olive oil, it makes biodegradation of the waste difficult for conventional wastewater treatment plants, OMWW components inhibit the growth of microorganisms that are used in the biodegradation process in treatment facilities (ex. anaerobic digestion processes). In Palestine, sewage treatment plants do not allow discharge of OMWW into the sewage network, illegal discharge leads to sealed pipes, collapsed pumping stations, and treatment plants.

The use of (OMWW) in concrete mixes has not been thoroughly studied, and the effect of adding wastewater to the concrete and steel is still ambiguous. However, a local study conducted by Eng. Habeeb Emseeh (1997) studied the effect of adding the (OMWW) also known locally as (ZEBAR) on the concrete as a replacement for superplasticizers, the study shows that for the short term (cubes crushing on 7, 14, and 28 days) and W/C ratios range from 0.4 to 0.5) with different OMWW/water replacement ratios up to 30%, concrete

workability have increased between 6% up to 400%, and the strength also have increased by 1% to 38%. Along with that study, some local efforts were reported to use (OMWW) on concrete mixes, although the quantities used were humble due to the lack of solid theories or studies to support their use.

It is also worth mentioning that the cost of the using (OMWW) in concrete mixes is only the cost of transporting the material form the olive mills to ready-concrete factories.

1.2.4. Artificial Neural Network (ANN):

The use of artificial inelegance (AI) has become a major part of almost all industrial sectors, with different shapes and forms. ANN has been used in concrete mix design for a while (Qatu, 2019). ANN have been used in many fields of research to predict certain outputs using field measurements and notes (Najjar Y et al., 2005; Najjar Y. et al., 2019). ANN refers to the use of artificial neurons and certain codes, functions, and algorithms to emulate the structure of the human brain. It mainly consists of input layers, hidden layers, and output layers. Each layer contains several nodes (i.e. neurons). Input nodes are connected to the output nodes through the hidden layers with links, see Figure 3. Each link has a connection weight that represents its significance in the whole network which is optimized in the training stage. Supervised training is called back-propagation (BP), and it mainly consists of two stages: the feedforward stage and the feedback stage (Afandi et al., 2022). This training stage will enable the ANN to solve complex problems using appropriate values (weights) between neurons in different layers (e.g. between inputs and hidden nodes, between hidden nodes and outputs, and between the nodes of the hidden layers). Several activation functions normally are used to complete the linking (mapping) process, with the most famous one being the sigmoidal function (Yousif et al, 2010).

Figure 3: Typical ANN Model Structure.

1.3. Problem statement:

Due to the high cost of treatment of OMWW and the almost absence of law enforcement in the olive production sector, the current disposal methods in many developed countries are considered inefficient. No serious attempts were made to use OMWW in concrete mixes as a disposal method, and the effects of adding OMWW to concrete and how it changes mixes different properties are still unclear.

1.4. Objectives:

The main objective of this research is to determine the effect of using OMWW in concrete mixes as a disposable method for OMWW. Along with studying the effect of adding OMWW to concrete mixes and how this material alters/changes the different properties of the concrete mixes.

Another objective is to develop an ANN model to predict the fresh and hardened concrete properties for a given mixing ratio.

CHAPTER TWO: METHODOLOGY

In this research, the effect of OMWW is studied, properties of fresh and hardened concrete after adding OMWW to concrete mixes will be thoroughly studies.

Firstly, the different components of the concrete mix are characterized. namely; cement, OMWW, fine aggregates, coarse aggregates, and fresh water and OMWW. These tests will be sieve analysis for coarse and fine aggregates, specific gravity, absorption, abrasion, OMWW and normal water composition, and cement strength.

The OMWW used in this research was taken from Dier Ghassaneh village, see Figure 9. Tests have been made on this OMWW to obtain its composition. These tests were performed by Testing Labs Center, at Birzeit University. These tests will cover the following aspects:

- PH level
- Conductivity
- Dry matter
- Organic content
- Mineral matter
- Calcium, Sodium, Potassium, Magnesium Phosphate.
- Chloride, Sulfate, Bromide, Nitrate.
- Specific weight.

The fresh and hardened concrete properties for each mix as will be measured including slump and compressive strength. Slump test importance comes from its ability to measure the ease of fresh concrete to be molded and worked with, the slump test is performed according to ASTM standard C109. with pictures. Additionally, the compressive strength of the hardened concrete is measured according to ASTM C109 and its parameters, cube dimensions, loading rate, machine model etc.

To study the effect of adding OMWW to concrete, several mixes will be designed with different w/c ratios, 0.35, 0.5, and 0.65. Different OMWW replacement ratios will be used for each mix ranging from 0%, 10%, 20%, 40%, 60%, 80%, and 100%. Three cubes to will be tested

at each testing age, 7 days, 14 days, 28 days, and 100 days or more. Table *3* summarizes the proposed mixes with different water content and OMWW ratios.

Mix	W/C	Water	OMWW%						
		Content							
Α	0.35	8%	0%	10%	20%	40%	60%	80%	100%
В	0.5	12%	0%	10%	20%	40%	60%	80%	100%
С	0.65	10%	0%	10%	20%	40%	60%	80%	100%
D	0.65	12%	0%	10%	20%	40%	60%	80%	100%

Table 3: Proposed Mixes

Cement cubes will also be prepared using only water and cement to investigate how adding OMWW would affect the chemical reaction between the cement and the water. These cubes will be made with ratios of 0%, 10%, 20%, 40%, 70%, and 100% of replacement between OMWW and normal water. Cubes will be crushed in Birzeit University materials laboratory using the crushing machine shown in Figure *4*.

Figure 4: Concrete cubes crushing machine

SEM and x-ray diffraction pictures will be taken for several hardened concrete samples with different OMWW ratios to investigate any changes when adding OMWW to a concrete mix.

Finally, ANN will be utilized aid in the concrete mix design with OMWW to create a design tool, which will enable the user to insert the desired outcomes in terms of strength and slump, and then receives the results showing the level of OMWW replacement required and the predicted strength and slump for the proposed mix.

ANN structure, training algorithm, program used for training (tr-seq1 from Najjar paper), creating links between different nodes and giving these links proper weights after training.

The criteria for choosing the optimum structure (maximum number of hidden nodes, statistical parameters used to measure the accuracy of ANN model, then start from 1 to max then 2 to max etc.) is based on minimizing the error difference between the predictions of the ANN model and the actual/tested data points.

The data points will be divided into training points, testing points, and validation points. The ANN model will be created to develop logical relationships between the different inputs (e.g. w/c, water content, replacement level, etc.) and the required outputs (e.g. Expected strength and slump). After that, ANN outputs will be utilized to determine the optimized mixes for certain selection criteria, and will then will be tested in the laboratory to validate the outputs of the created ANN model.

CHAPTER THREE: RESULTS AND DISCUSSION

3.1. Raw material characterization:

The first step is to test the input materials used in the concrete mixes, this includes the cement, fine and coarse aggregates, normal (potable) water, and OMWW. The following will show the results for each material.

1- Coarse and Fine Aggregates: Figure 5 shows sand and gravel used in this research, Figure 6 shows sieve analysis results for coarse aggregates, and Figure 7 shows sieve analysis results for fine aggregates. Table 4 shows fine and coarse aggregate properties and characteristics.

Figure 5: sand and gravel used in the concrete mixes.

Figure 6: Grain Size Distribution for Coarse Aggregates

Figure 7: Grain Size Distribution for fine Aggregates

Material	Absorption %	S.G. dry	S.G.	Apparent	LA.
		basis	S.S.D	S.G.	Abrasion
Fine Aggregate	1.67	2.47	2.62	2.78	
Coarse Aggregate	2.53	2.502	2.56	2.67	25-28 %

Table 4: Aggregates properties and characteristics.

Figure 8 shows sample preparation for fine and coarse aggregates for absorption test. Compared to ASTM C33, fine aggregates fall in shortage in some categories between No.16 and No.30 sieves in which the used fine aggregates have higher ratios than that stated in ASTM C33. However, for the coarse aggregates used in this research, and as per ASTM C33, the aggregates comply with the ASTM standard to be used in the concrete mixes in both sieve grading and the abrasion ratio which the ASTM states that it shall be less than 50%, and in this research case it was between 25-28%.

Figure 8: Preparation of sand and gravel samples for absorption testing

- 2- Potable Water: The properties of water are shown in Table 5 which shows the chemical characteristics of water. These tests were performed at the Testing Laboratories Center at Birzeit University.
- 3- OMWW: properties of OMWW are shown in Table 5 which shows the chemical characteristics of OMWW. These tests were performed at the Testing Laboratories Center at Birzeit University. Figure 9 shows the process of obtaining OMWW.

OMWW was obtained in two different years, the OMWW used in this research sample was the fresh one obtained during the year (2022). The other samples were obtained one year before (the year 2021), and this was to test the effect of time on the levels of its contents during a year of resting and the effect of sedimentation on the OMWW contents.

Figure 9: Obtaining process of raw OMWW

Table 5: Chemical characteristics of Fresh OMWW, Old (Sedimented) OMWW, and fresh water.

Parameter	Fresh OMWW	Old (sedimented) OMWW	Fresh Water	
РН	4.66	4.35	7.62	
Conductivity (MicroS/cm)	11255	11436	460	
Dry matter	5.13%	4.44%		
Organic content	4.0%	3.36%		
Potassium (K) (ppm)	3996	4474	1.71	
Chloride (ppm)	1152.29	1046.02	40.43	
Sulfates (SO4) (ppm)	347.96	340.62	17.54	
Nitrates (NO3) (ppm)	141.09	156.92	5.52	
Sodium (Na) (ppm)	244.4	208	28	
Calcium (Ca) (ppm)	192.2	194.0	46.1	
Specific Weight	9.95	9.98		

Results show that time does not significantly affect the contents of the OMWW, as seen in Table 5, values of tested elements do not vary that much for a period of one year separating the fresh and old OMWW intakes.

A noticeably high level compared to freshwater are organic content, potassium, chloride, Sulfates, Nitrates, and Sodium levels.

Figure 10 shows the OMWW replacement ratio vs. chloride level in different selected mixes, and as the level of replacement increases, so does the chloride level. As per ASTM, lower and upper limit lines represent the range for chloride in the concrete to pose a threat to the reinforcing steel. However, ASTM does not set a limit for non-reinforced concrete. Note that chloride content depends on water content level, and for higher levels of water content (ex. 12%), allowable replacement levels decrease.

4- Cement: The used cement was type 42.5 brought from a local ready concrete factory Al-Nabali and Al-Sheik, the strength of the cement when tested alone to give an average compressive strength of (42.5 MPa).

3.2. Concrete mixes preparation:

Laboratory testing for selected W/C ratios and replacement ratios started on 24 November 2022. Different concrete mixes were prepared to be tested in the laboratory, designed mixes differing in the following:

- Water to cement ratio (W/C); which is considered the main factor affecting the strength of the mix. Three W/C ratios were considered; 0.35, 0.5, and 0.65
- Water content level; which is the main factor affecting the slump of the mix. Mix 0.35 was made with low water content thus low slump, mix 0.5 was made with the highest water content, and mix 0.65 was made with a medium water content.

Table 6 shows the quantities and ratios for each selected mix.

Mix	W/C	Water Content (Kg)	Water Content (%)	Cement Content (Kg)	Coarse Aggregate (Kg)	Fine Aggregate (Kg)	Max Aggregate Size (mm)
Α	0.35	190	8%	543	960	652	20
В	0.5	285	12%	570	960	530	20
С	0.65	235	10%	361.5	960	788.5	20
D	0.65	285	12%	438.5	960	661.5	20

Table 6: Mixes Contents and Ratios

Figure 11 shows the preparation process for the raw materials to be mixed and tested.

Figure 11: Concrete mix material preparation for mixing.

3.3. Fresh concrete:

1- Control mixes:

Control mixes represent the 0% replacement using only normal water in the mix to set a datum for the after-replacement mix results.

A slump test was used to determine the workability level for the control mixes. As shown in Table 7, the level of the water is a percentage of the total weight of the mix.

It is noticeable that as the water content increased, despite the ratio of w/c, the slump increased.

Mix	W/C	Water content (%) of total mix weight	Slump (cm)
A	0.35	8%	0
С	0.65	10%	4.5
В	0.5	12%	11
D	0.65	12%	18

Table 7: Water content and slump for different W/C ratios

2- OMWW mixes:

The relationship between OMWW level as a percentage of total water content in the mix and workability was plotted, and it shows that workability increased as the level of replacement increased, see Figure 12.

For the mixes with 8% water content which is considered a low level of water content, adding OMWW shows no effect on workability. However, for the 10% of water content, the slump increased up until the 60% replacement of OMWW, then the slump stabilized at the full collapse level of a slump from that point (60%) up until the 100% replacement level, which means that the effect of OMWW on the slump has faded. At the 12% water content, the increase of slump was at a higher rate compared to the 10% water level, and as the same as the 10% water level mixes, the slump stabilized at the collapse state at

almost 20% of replacement, after that point (20%), adding OMWW to the mix shows no effect on the slump.

Figure 12: OMWW (as a percentage of total water content) VS. Slump.

The following pictures show the slump of different mixes. Figure 13 shows the slump test for Mix A, and it was zero for all replacement ratios.

Figure 14 and Figure 15 show the slump test for Mix B, which shows a rapid rate to reach total collapse starting with a 20% replacement ratio.

Figure 16 and Figure 17 and Figure 18 show slump test results for Mix C, and results show a lower rate till collapse is reached. Figure 19 shows the process of cube preparation.

Figure 13: Concrete mix A, with 8% water content, and zero slump.

Figure 14: Concrete mix B, 12% water content, 0% OMWW, and 11.0cm slump.

Figure 15: Concrete mix B, 40% OMWW, and 24.5cm slump

Figure 16: Concrete mix C, 10% water content, 0% OMWW, and 4.5cm slump.

Figure 17: Concrete mix C, 10% OMWW, and 11.5cm slump

Figure 18: Concrete mix C, 80% OMWW, and 24cm slump.

Figure 19: Cubes preparation and filling

3.4. Hardened concrete:

1- Control mixes

As mentioned before, concrete cubes of dimensions (10X10X10 cm) were prepared to be tested in the lab, see Figure 21. Three cubes were tested each time, and at testing ages of 7, 14, and 28 days were considered in this report, and later, for more aged cubes. The first relationship to be drawn is the one between w/c ratio and strength during different testing times. Figure 20 shows that the strength of concrete decreased as the w/c ratio increased.

Figure 20: w/c vs. concrete strength at 28 days age for control concrete mixes (0% OMWW)

Figure 21: Concrete crushing machine and crushed cube.

2- OMWW mixes:

• Mix A: w/c = 0.35, 8% water content;

Figure 22 shows the shape of the relationship between OMWW as a percentage of the total water used in the mix and concrete strength at different ages. The relationship almost stays the same for different testing ages, however, the strength of the concrete greatly decreases as the replacement ratio reaches 80%, and it falls to
very low strength the concrete cubes show a failure mode far from a brittle failure, it almost crumbles by any small force and looks like concrete does not even react or hardened, see Figure 23.

Figure 22: Relationship between OMWW% as a replacement of total water and concrete strength for Mix A at different ages

Figure 23: Crushed cube with a high level of OMWW%

Note that Mix A is the one with the lowest water content (8%), this is reflected in the range it managed to reach before reaching the strength falling area, which is the highest among the other water content levels. However, this range differs between

the mixes as the water content differs thus the amount of OMWW in the mixes differs.

• Mix B: w/c = 0.5, 12% water content

Figure 24 shows the relationship between OMWW as a percentage of the total water used in this mix and concrete strength at different ages. This is different from the previous relationship as the water content is the highest between all the mixes, which was reflected as the range required till the strength starts to degrade is less than that with 8% water content thus lower OMWW content in total. However, the common thing between these relationships is the increase in OMWW% decreases the strength of the concrete to a very low value.

Figure 24: Relationship between OMWW% as a replacement of total water and concrete strength for Mix B at different ages

• Mix C: w/c = 0.65, 10% water content:

Figure 25 shows the relationship between OMWW as a percentage of the total water used in this mix and concrete strength at different ages. This is also different from the previous relationships as the water content is the medium between all the mixes, which was reflected as the strength degradation started to fall in the middle area between the other two mixes (Mix A & Mix B).

Figure 25: Relationship between OMWW% as a replacement of total water and concrete strength for Mix C at different ages

• Mix D: w/c = 0.65, 12% water content:

Figure 26 shows the relationship between OMWW as a percentage of the total water used in this mix and concrete strength at different ages. This mix is different from Mix C in water content, which was 12% in this mix instead of 10% in Mix C.

Figure 26: Relationship between OMWW% as a replacement of total water and concrete strength for Mix D at different ages

Comparison: four mixes should be included (w/c 0.35 WC 8%, and w/c 0.5 WC 12%, w/c 0.65 WC 10%, and w/c 0.65 WC 12%)

Comparing the different mixes with different OMWW ratios along with the control mixes shows that Mix A with 8% water content has the highest overall strength, and the most mix to resist the degradation in strength when OMWW is added to the mix. Mixes B and C with 12% and 10% water content respectively, show a degradation in the strength but at a higher rate since the water content and thus OMWW content is larger in these mixes.

Figure 27 shows the relationship between OMWW% as a replacement of total water and concrete strength for the same water content with a different w/c ratio. and Figure 28 shows the relationship between OMWW% as a replacement of total water and concrete strength for the same w/c ratio with different water content. It was seen that for the mixes with the same w/c with a different water content, the compressive strength is less in case of higher water content, this can be related to the higher content of organic matter as the OMWW content increases when water content increases. At the same time, and while water content remains the same, the w/c ratio differentiates the curves rather than the water content.

Figure 27: Relationship between OMWW% as a replacement of total water and concrete strength for the same water content

Figure 28: Relationship between OMWW% as a replacement of total water and concrete strength for the same w/c at a different water content

3.5. Time effect on strength:

Mixes were tested at an age of (160 days), to check the effect of time on the strength of the concrete cubes. Results show that cube strength did not decrease and, in most cases, it did increase in the range between 2% and 45%. However, this increase does not seem to have a pattern correlated to the w/c ratio or the water content.

3.6. Cementitious cubes:

As mentioned earlier, different cementitious cubes (7cm X 7cm X 7cm) were prepared with different OMWW replacement ratios. Cubes were crushed at 28 days of age. Figure 29 shows the relationship between the OMWW% in the mixes of cement and water only. It was clear that as OMWW content increases, the strength of the cementitious cubes decreases. This can be related to the higher content of organic matter, and lower alkali levels due to the acidity nature of the OMWW.

It was also noted that the density of the cubes decreased as the OMWW content increased, see Figure 30. This can be related to the higher porosity due to higher organic content as OMWW replacement levels increase

Figure 29: Relationship between OMWW% as a replacement of total water and concrete strength for cement and OMWW cubes at 28 days age

Figure 30: Relationship between OMWW% as a replacement of total water and density

3.7. Scanning electron microscope (SEM) and X-ray diffraction:

To study the effect of adding OMWW to the mix at a micro level, scanning electron microscope (SEM) images were taken for selected samples shown in Table 8. X-ray diffraction test was also performed on the same samples as per Table 8. Published papers for Stutzman, et al. (2001) and Uzbaş & Aydın, (2019) were used to understand the content of the taken images.

Sample No.	w/c	Water Content	OMWW%	Actual tested strength (MPa)
1	0.65	12%	0%	32.43
3	0.65	12%	20%	29.63
7	0.65	12%	100%	0.73
В	0.35	8%	0%	48.16
U	0.35	8%	20%	56.12
G	0.35	8%	100%	4.86
Н	0.50	12%	0%	41.62
J	0.50	12%	20%	40.90
N	0.50	12%	100%	0.74
Ο	0.65	10%	0%	34.41
R	0.65	10%	20%	33.47
X	0.65	10%	100%	0.71

Table 8: Selected mixes for SEM images and X-ray diffraction

Figure 31: X-ray diffraction for all samples

Figure 31 shows the results of the X-ray for all samples. Results of SEM and X-ray are shown in Figure 32 and Figure 33 and Figure 34 for mix D, Figure 35 and Figure 36 and Figure 37 for mix A, Figure 38 and Figure 39 and Figure 40 for mix B, Figure 41 and Figure 42 and Figure 43 for mix C.

Figure 32: X-ray diffraction and SEM for sample No.1 (0% OMWW replacement)

Figure 33: X-ray diffraction and SEM for sample No.3 (20% OMWW replacement)

Figure 34: X-ray diffraction and SEM for sample No.7 (100% OMWW replacement)

Figure 35: X-ray diffraction and SEM for sample No.B (0% OMWW replacement)

Figure 36: X-ray diffraction and SEM for sample No.U (20% OMWW replacement)

Figure 37: X-ray diffraction and SEM for sample No.G (100% OMWW replacement)

Figure 38: X-ray diffraction and SEM for sample No.H (0% OMWW replacement)

Page 37 of 55

Figure 40: X-ray diffraction and SEM for sample No.N (100% OMWW replacement)

Figure 41: X-ray diffraction and SEM for sample No.O (0% OMWW replacement)

Figure 42: X-ray diffraction and SEM for sample No.R (20% OMWW replacement)

Figure 43: X-ray diffraction and SEM for sample No.X (100% OMWW replacement)

Based on SEM and x-ray images, small traces of organic matter were noticed as small white dotes. However, no noticeable traces of abnormal substances were noticed.

Figure 44 and Figure 45 and Figure 46 show the result of the x-ray diffraction test or samples H, J and N, as they show the amount of phases and elements (weight %).

Phase composition: Sodium calcium hexafluoroaluminate - \a (17.5%), Sodium calcium pentafluoroaluminate fluoride - \$-beta (10.1%), Magnesium cobalt diphosphate (1.1/0.9/1) (8.8%), Potassium tecto-divanadato(III)tetraphosphate (8.1%), Dibarium octafluorotriniccolate decafluorotetraniccolate (7.2%), Disodium manganese chromium fluoride (6.8%), Dibarium octafluorotriniccolate decafluorotetraniccolate (5.7%), Iron vanadium molybdenum oxide (4/1.98/3.02/20) (5.5%), Niobium thallium oxide hydrate (33/10.5/88.5/1.5) (5.3%), Rubidium niobium tungsten oxide (12/30/3/90) (5.0%), Disodium tribarium tetrachromium fluoride (4.6%), Potasium nitrate - \g (3.4%), Rubidium niobium cyclo-trigermanate (2.7%), Barium tantalum oxide (5.5/21.8/60) (2.0%), Lanthanum palladium oxide (4/1/7) (1.9%), Calcium ferrate manganate (1.3%), Tetraamminepalladium chromate (1.2%), Thallium Thallium(III) niobium oxide (1.4/0.6/2/6.6) (1.0%), Europium strontium copper oxide (1.3/1.7/2/5.65) (0.9%), Dithallium distrontium copper oxide (0.9%) Elemental composition: F (24.55%), O (15.09%), Ca (5.80%), Nb (5.61%), Ba (5.53%), Ni (5.15%), Na (4.41%), K (%9.G) a (3.97%), AI (3.65%), P (3.55%), TI (2.83%), Cr (2.36%), Co (1.88%), Mn (1.81%), V (1.75%), Mo (1.70%), Ta (1.40%), La (1.35%), Fe (1.31%), Rb (1.31%), Ge (1.08%), Mg (0.91%), N (0.70%), Pd (0.70%), W (0.48%), Sr (0.46%), Eu (0.33%), Cu (0.29%), H (0.05%) (LE: 40.39%)

Figure 44: Amounts of phases and elements (weight %) for sample no. H

Figure 45: Amounts of phases and elements (weight %) for sample no. J

Figure 46: Amounts of phases and elements (weight %) for sample no. N

It was noticed from Figure 44, Figure 45, and Figure 46 that the more OMWW in the sample,

the more Oxygen content there is, Also Chloride content did increase with the increase of

OMWW level in the sample.

Reports for other sample's content by weight (%) are shown in the attached appendices.

3.8. Artificial Neural Network (ANN):

ANN was employed to be a design tool to determine using required outputs, the required levels of inputs to achieve the desired goals.

The first step in the ANN is to determine the number of inputs and the number of required outputs, followed by determining the number of hidden layers and hidden nodes in each hidden layer. The number of hidden nodes will be determined using the following equation:

$$HN = \frac{N-NO}{C \cdot (IN+NO+1)}$$
(1)

Where: N: The number of training data sets.

HN: The number of hidden nodes.

NO: The number of outputs.

IN: The number of inputs

C: The number of data points allocated to each connection weight (constant).

Inputs for the ANN were:

- Water to cement ratio, w/c
- Water Content level (%)
- Replacement level, OMWW (%)

Outputs of the ANN were:

- Control mix strength (with no replacement)
- Control mix slump (with no replacement)
- Mix strength (with replacement)
- Mix slump (with replacement)

Thus, the number of hidden layers was set to 1, and the hidden nodes were set to 6 hidden nodes.

Next, data points (a total of 84 data points) were divided into three different main groups, a) training data group which consists of 56 data points, b) testing data ground which consists of 14 data points, and c) validation data ground which consists from 14 data point too (different

from the training ones). The selection of each group's data points has been considered to include maximum and minimum values for inputs and outputs.

Results of the ANN model after training show that the validation points have reached around 98% level of confidence. Figure 47 and Figure 48 show a plot of the actual results and the predicted results by the ANN model for strength and slump with OMWW replacement.

Figure 47: Plot between actual slump and slump predicted by the ANN model with OMWW replacement.

Figure 48: Plot between actual strength and strength predicted by the ANN model with OMWW replacement.

To test the ANN model's ability to predict strength and slump results, two different mixes were prepared using the created ANN model and then tested in the lab to test the actual mix strength and slump results and compare them to those predicted by the ANN model. A total of 4 mixes were prepared and tested at the lab, two with replacement and two without replacement. Table 9 shows the selected mixes and the expected results as the ANN model predicted.

Mix No.	w/c	Water content	OMWW%	Expected slump after replacement (cm)	Expected strength after replacement (MPa)	Expected original slump* (cm)	Expected original strength* (MPa)
A	0.45	11.5%	15%	17	48	3	46
В	0.7	9%	50%	18	39	1	37

Table 9: ANN model mixes expected slump and strength

*Notes: original slump and strength refer to the same w/c ratio and water content, with zero OMWW replacement.

Mix No.	w/c	Water Content	OMWW%	Expected Slump (cm)	Actual tested slump (cm)	Expected Strength (Mpa)	Actual tested strength (Mpa)
1	0.45	11.5%	15%	17	19.5	48	45.83 49.29 44.17
2	0.45	11.5%	0%	2.5	3	46	44.94 45.91 45.06
3	0.70	9%	50%	18	16	39	18.04 20.09 18.24
4	0.70	9%	0%	1	2.5	37	20.15 20.56 22.88

Table 10: ANN mixes testing results

As per Table 10, laboratory testing results show that:

• For both tested mixes, the ANN model expected the slump results to a good degree.

- For Mixes 1 and 2 (w/c = 0.45), the ANN model expected the strength for both the control mix (zero replacement) and the mix with replacement with a good degree.
- For Mixes 3 and 4 (w/c = 0.70), testing results show that the strength for zero replacement is close to the mix with 50% OMWW replacement. However, ANN did not expect the strength for both the control (zero replacement) and the replaced mix, this can be related to the fact that the ratio of w/c (0.7) is out of this research laboratory experimental work range since w/c ratios for the tested mixes ranges from (0.35) up to (0.65), so this causes the ANN model to extrapolate the results for higher range of w/c ratios.

After validating the results of the ANN model using lab testing, and knowing that the results of the model are valid for w/c ratios within the testing range (between 0.35 to 0.65), the ANN model was used to predict the strength of the tested mixes to plot and compare strength results between the lab testing results and the ANN model.

Figure 49 and Figure 50 and Figure 51 show the relationship between OMWW% and strength predicted by ANN and from laboratory testing different w/c ratios and different water contents. Results show a good match between ANN simulation and the lab testing results.

Figure 49: Relationship between OMWW% and strength predicted by ANN and from lab testing for w/c = 0.35 and 8% water content.

Figure 50: Relationship between OMWW% and strength predicted by ANN and from lab testing for w/c = 0.5 and 10% water content.

Figure 51: Relationship between OMWW% and strength predicted by ANN and from lab testing for w/c =0.65 and 10% and 12% water content.

This was extended to cover different water contents that were not tested in the lab, see Figure 52, Figure 53, and Figure 54.

Figure 52: Relationship between OMWW% and strength predicted by ANN for w/c =0.35 with different water contents

Figure 53: Relationship between OMWW% and strength predicted by ANN for w/c =0.5 with different water contents

Figure 54: Relationship between OMWW% and strength predicted by ANN for w/c =0.65 with different water contents

MATLAB was used to plot the relationship between the OMWW replacement ratio and the water content for slump and strength, as a sample, results for w/c 0.5, as shown in Figure 55, show that for a replacement to be effective for the slump, it shall be in a certain range as shown by the curved line, and for strength, an opposite curve is drawn, a third curve is drawn from combining the two curves of strength and slump, this curve shows the area of replacement and water content levels that is optimum for w/c of 0.50. Similar curves can be created for different w/c ratios.

Figure 55: OMWW replacement level vs. water content level for w/c = 0.50, A) shows the relationship for strength, B) shows the relationship for the slump, and C) shows the relationship for both.

CHAPTER FOUR: CONCLUSIONS AND RECOMMENDATIONS

Based on the obtained results it was concluded that OMWW has a significant effect on concrete when added to a concrete mix. The effect of OMWW depends on water content and w/c. It was clear that as water content increased, the effect of OMWW increased too. It was noted that adding OMWW to a concrete mix has increased its slump, this increase depends on the water content of the mix and w/c ratio. Adding OMWW to the concrete mixes increased the slump of Mix B, Mix C, and Mix D to a point of total collapse at certain replacement ratios, depending on water content and replacement level.

Replacing normal water with OMWW (100% replacement level) in a concrete mix greatly decreased concrete compressive strength, this might be related to the composition of the OMWW and the existence of organic matters and other compositions previously mentioned, as crushing of concrete cubes of mixes with high OMWW replacement ratios (80% and 100%) shows a non-hardened concrete inside these cubes.

For low replacement levels (up to 20%), the compressive strength of concrete shows a small deviation from the original strength (original strength with zero OMWW replacement level), and for higher replacement levels, the strength started to decrease until it reaches the point of almost no strength for the full replacement level (100% OMWW instead of normal water). The decrease in the mix strength after adding OMWW to the mix is not a sudden decrease, it started (at low replacement ratios) to show an increase or have no effect on the concrete strength, however, as the replacement ratio increased, the strength started to decrease until it reached almost no strength at the full replacement of OMWW instead of normal water. Also, as the water content increased in the concrete mix, the speed of strength degradation increased.

For the same w/c ratio, increasing water content decreased the strength by (10-20%) for water content changing from 10% to 12%. For the same water content with different w/c ratios, the mix with a lower w/c ratio shows more overall strength compared to a higher w/c ratio for all OMWW replacement levels.

For approximately up to 20% OMWW replacement of total water content, the effect of OMWW shows an increase in a slump without any significant change in the strength.

From testing ages more than 28 days, it was found that strength does not decrease with time, in contrast, it did increase even for mixes with high replacement levels.

ANN model shows a good ability to predict the results of slump and compressive strength for w/c ratio within the research testing range (0.35-0.65), this was validated using laboratory testing for mixes created by the ANN model.

ANN model was used to create figures for different w/c rather than tested ones, and MATLAB was used using points obtained from the ANN model to plot relationships between replacement and expected slump and strength to show optimum ranges for different w/c ratios. These figures can be used as a design tool to optimize the required mix.

It was noted that during the curing period, the oily substance inside OMWW leaked from the concrete to the surrounding water, and it was visible at the surface of the curing water.

Mixes with an OMWW level of less than 30% will not impose any harm on the reinforcing steel as the level of chloride will not reach the limit recommended by the ASTM. It is recommended to use the concrete in a non-reinforced element if higher levels of OMWW are used.

X-ray diffraction results show a trace of oily substance in the concrete, this does increase as the OMWW replacement increases, in addition, and it shows higher oxygen content as the OMWW replacement increases.

Future work:

The work made in this research can be extended to include:

- Different w/c ratios and different water contents.
- Extend the ranges of w/c and water contents beyond and above selected ratios.
- The effect of adding other additives while adding OMWW to the concrete.
- Using different types of cement.
- Use a treatment method for the OMWW and use it in the concrete after treatment.
- ANN model needs more training points in order to be able to design mixes outside the range specified in this research.

Appendices:

Attached to this report are the following appendices:

- 1- Appendix A: Water samples test results.
- 2- Appendix B: X-ray reports and SEM images.
- 3- Appendix C: MATLAB output images.

REFERENCES

- Afandi, A., Lusi, N., Catrawedarma, I. G. N. B., Subono, S., & Rudiyanto, B. (2022). Prediction of temperature in 2 meters temperature probe survey in Blawan geothermal field using artificial neural network (ANN) method. *Case Studies in Thermal Engineering*, 38. https://doi.org/10.1016/j.csite.2022.102309
- A, O. S., & B, E. E. (n.d.). Effect of Sodium Chloride (Nacl) on Concrete Compressive strength; Effect of Sodium Chloride (Nacl) on Concrete Compressive strength. www.askthebuilder.com/B251

ASTM C1602. (n.d.).

- Badur, S., & Chaudhary, R. (2008). UTILIZATION OF HAZARDOUS WASTES AND BY-PRODUCTS AS A GREEN CONCRETE MATERIAL THROUGH S/S PROCESS: A REVIEW. In *Rev.Adv.Mater.Sci* (Vol. 17).
- Batayneh, M., Marie, I., & Asi, I. (2007). Use of selected waste materials in concrete mixes. *Waste Management*, 27(12), 1870–1876. https://doi.org/10.1016/j.wasman.2006.07.026
- Beddaa, H., Fraj, A. Ben, Lavergne, F., & Torrenti, J.-M. (2019). *Effect of potassium humate as humic* substances from river sediments on the rheology, the hydration and the strength development of a cement paste. https://www.elsevier.com/open-access/userlicense/1.0/
- Cassano, A., Conidi, C., Galanakis, C. M., & Castro-Muñoz, R. (2016). Recovery of polyphenols from olive mill wastewaters by membrane operations. In *Membrane Technologies for Biorefining* (pp. 163–187). Elsevier Inc. https://doi.org/10.1016/B978-0-08-100451-7.00007-4
- Ekins, P., & Zenghelis, D. (2021). The costs and benefits of environmental sustainability. *Sustainability Science*, *16*(3), 949–965. https://doi.org/10.1007/s11625-021-00910-5
- El Hassani, F. Z., Fadile, A., Faouzi, M., Zinedine, A., Merzouki, M., & Benlemlih, M. (2020). The long term effect of Olive Mill Wastewater (OMW) on organic matter humification in a semi-arid soil. *Heliyon*, 6(1). https://doi.org/10.1016/j.heliyon.2020.e03181
- Guo, Y., Wang, X.-P., Zhu, Y.-F., Zhang, J., Gao, Y.-B., Yang, Z.-Y., Du, R.-G., & Lin, C.-J. (2013).
 Electrochemical and XPS Study on Effect of Cl-on Corrosion Behavior of Reinforcing Steel in Simulated Concrete Pore Solutions. In *Int. J. Electrochem. Sci* (Vol. 8). www.electrochemsci.org
- Kucche, M. K. J., Jamkar, S. S., & Sadgir, P. A. (2015). Quality of Water for Making Concrete: A Review of Literature. *International Journal of Scientific and Research Publications*, *5*(1).
- Lallahem, S., Mania, J., Hani, A., & Najjar, Y. (2005). On the use of neural networks to evaluate groundwater levels in fractured media. *Journal of Hydrology*, *307*(1–4), 92–111. https://doi.org/10.1016/j.jhydrol.2004.10.005
- Liu, D., Zhang, B., Yang, Y., Xu, W., Ding, Y., & Xia, Z. (2018). Effect of Organic Material Type and Proportion on the Physical and Mechanical Properties of Vegetation-Concrete. Advances in Materials Science and Engineering, 2018. https://doi.org/10.1155/2018/3608750

- Mohawesh, O., Mahmoud, M., Janssen, M., & Lennartz, B. (2014). Effect of irrigation with olive mill wastewater on soil hydraulic and solute transport properties. *International Journal of Environmental Science and Technology*, 11(4), 927–934. https://doi.org/10.1007/s13762-013-0285-1
- Qatu, K. (2019). Optimizing the performance of complex engineering systems aided by artificial neural networks. https://egrove.olemiss.edu/etd/1962
- Sabri Saleh, I. (2017). Effect of External and Internal Sulphate on Compressive Strength of Concrete. In *International Journal of Applied Engineering Research* (Vol. 12). http://www.ripublication.com
- Salih Al-Attar, T., Tareq Salih AL-ATTAR, A., & Mustafa Sameer ABDUL-KAREEM, L. (n.d.). Effect of Chloride Ions Source on Corrosion of Reinforced Normal and High Performance Concrete. Utilization of mineral-sequestration for CO2 in car parks and tunnels View project Performance of Super-Absorbent Polymer (SAP) as an Internal Curing Agent for Self-Compacting Concrete View project EFFECT OF CHLORIDE IONS SOURCE ON CORROSION OF REINFORCED CONCRETE EFFECT OF CHLORIDE IONS SOURCE ON CORROSION OF REINFORCED NORMAL AND HIGH PERFORMANCE CONCRETE. https://www.researchgate.net/publication/280295710
- Sinshaw, T. A., Surbeck, C. Q., Yasarer, H., & Najjar, Y. (2019). Artificial Neural Network for Prediction of Total Nitrogen and Phosphorus in US Lakes. *Journal of Environmental Engineering*, 145(6). https://doi.org/10.1061/(asce)ee.1943-7870.0001528
- Slama, H. Ben, Chenari Bouket, A., Alenezi, F. N., Khardani, A., Luptakova, L., Vallat, A., Oszako, T., Rateb, M. E., & Belbahri, L. (2021). Olive Mill and Olive Pomace Evaporation Pond's By-Products: Toxic Level Determination and Role of Indigenous Microbiota in Toxicity Alleviation. *Applied Sciences*, 11(11), 5131. https://doi.org/10.3390/app11115131
- Smaoui, N., Bérubé, M. A., Fournier, B., Bissonnette, B., & Durand, B. (2005). Effects of alkali addition on the mechanical properties and durability of concrete. *Cement and Concrete Research*, 35(2), 203– 212. https://doi.org/10.1016/j.cemconres.2004.05.007
- Stutzman, P. E. (n.d.). Workshop on the Role of Calcium Hydroxide in Concrete). In *Proceedings. J. Skalny*.
- Uzbaş, B., & Aydın, A. C. (2019). Analysis of Fly Ash Concrete With Scanning Electron Microscopy and X-Ray Diffraction. *Advances in Science and Technology Research Journal*, *13*(4), 100–110. https://doi.org/10.12913/22998624/114178
- Yoneyama, A., Choi, H., Inoue, M., Kim, J., Lim, M., & Sudoh, Y. (2021). Effect of a nitrite/nitrate-based accelerator on the strength development and hydrate formation in cold-weather cementitious materials. *Materials*, *14*(4), 1–14. https://doi.org/10.3390/ma14041006
- Zagklis, D. P., Arvaniti, E. C., Papadakis, V. P., & Paraskeva, C. A. (2013). Sustainability analysis and benchmarking of olive mill wastewater treatment methods. In *Journal of Chemical Technology and Biotechnology* (Vol. 88, Issue 5, pp. 742–750). https://doi.org/10.1002/jctb.4036

- Zbakh, H., & El Abbassi, A. (2012). Potential use of olive mill wastewater in the preparation of functional beverages: A review. In *Journal of Functional Foods* (Vol. 4, Issue 1, pp. 53–65). https://doi.org/10.1016/j.jff.2012.01.002
- The Palestinian Central Bureau of Statistics (PCBS). "Main Economic Indicators for Olive Presses Activity in Palestine by Governorate / Automation Level, 2019". August 18, 2021. https://www.pcbs.gov.ps/statisticsIndicatorsTables.aspx?lang=en&table_id=908 (Access date: 30/11/2021). (n.d.).

Dimitris P., Eleni C., Vagelis G., Christakis A., "Sustainability analysis and benchmarking of olive mill wastewater treatment methods", J Chem Technol Biotechnol (2013): 88: 742–750. DOI 10.1002/jctb.4036

A. Cassano, C. Conid, C.M. Galanakis, R. Castro-Mu~noz, "Recovery of polyphenols from olive mill wastewaters by membrane operations" Membrane Technologies for Biorefining. (2016) http://dx.doi.org/10.1016/B978-0-08-100451-7.00007-4.

Malek Batayneh, Iqbal Marie, Ibrahim Asi, "Use of selected waste materials in concrete mixes", Waste Management, 27, (2007): 1870–1876.

Hanaa Zbakha, Abdelilah El Abbassib, "Potential use of olive mill wastewater in the preparation of functional beverages: A review", JOURNAL OF FUNCTIONAL FOOD, S4, (2012): P 53–65.

Cengiz Karaca, and H. Huseyin ozturK, "An economical, energetical and environmental management of olive oil production wastes". NEW MEDIT N. 1. (2018).

Houda Ben Slama, Ali Chenari Bouket, Faizah N. Alenezi, Ameur Khardani, Lenka Luptakova, Armelle Vallat, Tomasz Oszako, Mostafa E. Rateb, and Lassaad Belbahri, "Olive Mill and Olive Pomace Evaporation Pond's By-Products: Toxic Level Determination and Role of Indigenous Microbiota in Toxicity Alleviation". Appl. Sci. (2021), 11, 5131. https://doi.org/10.3390/app11115131

Fatima Zahra El Hassani^{*}, Abdelali Fadile, Mouna Faouzi, Abdelah Zinedine, Mohamed Merzouki, Mohamed Benlemlih. "The long-term effect of Olive Mill Wastewater (OMW) on organic matter humification in a semi-arid soil", Heliyon 6, (2020). doi.org/10.1016/j.heliyon.2020.e03181

The Palestinian Central Bureau of Statistics (PCBS). "Main Economic Indicators for Olive Presses Activity in Palestine by Governorate / Automation Level, 2019". August 18, 2021. https://www.pcbs.gov.ps/statisticsIndicatorsTables.aspx?lang=en&table_id=908 (Access date: 30/11/2021)

Paul Ekins, Dimitri Zenghelis. "The costs and benefits of environmental sustainability". Sustainability Science. (2021). 16:949–965. https://doi.org/10.1007/s11625-021-00910-5

Smita Badur, Rubina Chaudhary. "UTILIZATION OF HAZARDOUS WASTES AND BY-PRODUCTS AS A GREEN CONCRETE MATERIAL THROUGH S/S PROCESS: A REVIEW". Rev.Adv.Mater.Sci. 17, (2008), 42-61.

Aly Said, Oscar Quiroz. "Recycling of waste latex paint in concrete: a review". MOJ Polymer Science. (2018). Volume 2 Issue 2. 52–54. DOI: 10.15406/mojps.2018.02.00047

O. Mohawesh, M. Mahmoud, M. Janssen, B. Lennartz. "Effect of irrigation with olive mill wastewater on soil hydraulic and solute transport properties". International Journal of Environmental Science and Technology. (2013). ISSN 1735-1472. DOI 10.1007/s13762-013-0285-1

A. Akhmad, L. Nuraini, R. Bayu, Subono, Catrawedarma. "Prediction of temperature in 2 meters temperature probe survey in Blawan geothermal field using artificial neural network (ANN) method". Case Studies in Thermal Engineering 38, (2022), 102309. https://doi.org/10.1016/j.csite.2022.102309

Utepov, Y.; Tulebekova, A.; Aldungarova, A.; Mkilima, T.; Zharassov, S.; Shakhmov, Z.; Bazarbayev, D.; Tolkynbayev, T.; Kaliyeva, Z. Investigating the Influence of Initial Water pH on Concrete Strength Gain Using a Sensors and Sclerometric Test Combination. Infrastructures 2022, 7, 159. https://doi.org/10.3390/infrastructures7120159.

Kucche, M. K. J., Jamkar, D. S. S., & Sadgir, D. P. A. Quality of Water for Making Concrete: A Review of Literature. International Journal of Scientific and Research Publications, Volume 5, Issue 1, January 2015, ISSN 2250-3153 5(1), 10.

Chinmoy Dutta, Md. Abdur Rakib, Md. Akhtar Hossain, Muhammad Harunur Rashid. EFFECT OF MIXING WATER pH ON CONCRETE. 2020. 5th International Conference on Civil Engineering for Sustainable Development (ICCESD 2020), 7~9 February 2020, KUET, Khulna, Bangladesh (ISBN-978-984-34-8764-3).

H. Beddaaa,, Ben Fraja, F. Lavergnea, J-M Torrentic. Effect of potassium humate as humic substances from river sediments on the rheology, the hydration, and the strength development of a cement paste. Cement and concrete composites. (2019). Manuscript_d0412d6b6562b8c6cfbaa25fe8df9852.

Daxiang Liu,1Baohua Zhang,1Yueshu Yang,1Wennian Xu,2Yu Ding,3and Zhenyao Xia

Al-Attar, Tareq. (2011). Effect of Chloride Ions Source on Corrosion of Reinforced Normal and High-Performance Concrete. AGIR Bulletin. 107-112.

Yoneyama A, Choi H, Inoue M, Kim J, Lim M, Sudoh Y. Effect of a Nitrite/Nitrate-Based Accelerator on the Strength Development and Hydrate Formation in Cold-Weather Cementitious Materials. Materials (Basel). 2021 Feb 20;14(4):1006. doi: 10.3390/ma14041006. PMID: 33672722; PMCID: PMC7924375.

Yousif, Salim & Al-gburi, Majid & Abdulkareem, Omar. (2010). DESIGN OF CONCRETE MIXES USING ARTIFICIAL NEURAL NETWORKS. The 2nd Regional. Conf. for Eng. Sci. 1-2/12/2010.

Appendix A: Water samples test results

Analytical Report

Report Date	: 05 June 2023
-------------	----------------

حروان متصور شعيبي : N Customer

	Sample Code	ES-20238666		
× ×	Source Sample Code Sample Name Sample Receiving Date	ريبار حيث 20 May 2023		
	Sampling date Category Batch No. Sample Size	Waste Water 500 ml		
	Origin Prod.Date Container Type	Plastic	Exp.Date	
k	Sample Condition Sampled By	ok مروان بتصور شع _{لای} :		

Test	Result	Method	Comments
Conductivity	11255 MicroS/cm	StMe	
(A) Potassium (K.).	3996.C ppm	ICP	
Dry matter	5.13 %	StMe	
Organic Content	40%	StMe	
Ash	7.14 %	StMe	
DH	4.66	StMe	
Chloride	1152.29 ppm	HPIC	
Bulfates (SO4)	347.96 opm	HPIC	
Bromule	Not Detected	HPIC	
Nitrales (NO3.)	141.09 ppm	HPIC	12305
IAI Sodium (Na)	244.4 ppm	ICF	(A)
(NA) Specific Weight	9.95	StMe	SPI SE
(A) Calcium (Ca.)	192.2 ppm	ICP	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Notes: The Center is only responsible for the results of the sample tested. This report must not be reissued without the written approval of the Center's director

40

Adi Qamhlen

Director

0

Senior Analyst, Environmental Analysis Unit

P.O.Box: 14 BIRZEIT, PALESTINE . PHONE: 972-2-2982010 . FAX: 972-2-2982166 e-mail: bzutl@birzeit.edu

Page 1 of 2

UNIVER

"IC Informed by chen'

[A] Acredited

BIRZEIT UNIVERSITY

Analytical Report

Report Date	4	05 June 2023
Customer	3	مروان متصبون شعيبى

Sample Code	ES-20238666			
Source Sample Code	A second second			
Sample Name	الريبان حديث			
Sample Receiving Date	20 May 2023			
Category	Waste Water			
Batch No.				
Sample Size	500 ml			
Origin				
Prod.Date	E	Exp.Date		
Container Type	Plastic			
Sample Condition	ak			
Sampled By	مروال منصور شعيني أ			
Test	Result	Method	Comments	
[A] Magnesium (Mg)	146.3 ppm	ICP		
Phosphate (PO4)	747.4 ppm	StMe		

Notes: The Center is only responsible for the results of the sample tested. This report must not be reissued without the written approval of the Center's director

Adl Damhieh Director

Senior Analyst, Environmental Analysis Unit

P.O.Box: 14 BIRZEIT, PALESTINE , PHONE: 972-2-2982010 . FAX: 972-2-2982166 e-mail: bzutl@birzeit.edu

Page 2 of 2

[NA] Not accredited [S] Subcontractor

*IC informed by client

[A] Asredited

Report Date

- 05 June 2023

Analytical Report

- Customer : بود محدد	مروان متم		
Sample Code	ES-20238665		
* Source Sample Code			
* Sample Name	اليبار قديم		
Sample Receiving Date	20 May 2023		
Sampling date	1		
Category	Waste Water		
Batch No.			
Sample Size	500 ml		
Origin			
Prod.Date		Exp.Date	
Container Type	Plastic		
Sample Condition	ok		
 Sampled By 	بروا <u>ر</u> متصور شعيبي *		
Test	Result	Method	Comments
Conductivity	11436 MicroS/cm	StMe	
[A] Polassium (K)	4474.0 ppm	ICP	
Dry matter	4,44 %	StMe	
Organic Content	3.36 %	StMe	
Ash	1.08-%	StMe	
pHq	4.35	StMe	
Chloride	1046.02 ppm	HPIC	

340,62 ppm

Not Detected

156.92 ppm

208.0 ppm

9,98 194.0 ppm

Notes: The Center is only responsible for the results of the sample tested. This report must not be reissued without the written approval of the Center's director

10

Adi Qamhieh Director

Sulfates (SQ4) Bromide

Nitrates (NO3)

[A] Sodium (Na)

[A] Calcium (Ca)

[NA] Specific Weight

HPIC

HPIC

IGP.

ICP

StMe

tailoui

Senior Analyst, Environmental Analysis Unit

P.O.Box: 14 BIRZEIT, PALESTINE . PHONE: 972-2-2982010 . FAX: 972-2-2982166 e-mail: bzutl@birzeit.edu

Page 1 of 2

[NA] Not accredited

[S] Subcontractor

"IC Informed by clien

[A] Acredited

Analytical Report

ICP

StMe

Report Date	1	05 June 2023
Customer	1	التروال لتصور شعيني

Sample Code	ES-20238665			
Source Sample Code	4 months could			
Sample Name	زيبار قشم ا			
Sample Receiving Date	20 May 2023			
Category	Waste Water			
Batch No.				
Sample Size	500 ml			
Origin	*			
Prod.Date		Exp.Date		
Container Type	Plastic			
Sample Condition	ok			
Sampled By	ەروان منصبور شعیبی 🗧			
Test	Result	Method	Comments	

158.1 ppm

942.2 ppm

(A) Magnesium (Mg) Phosphate (PO4)

Notes: The Center is only responsible for the results of the sample tested. This report must not be reissued without the written approval of the Center's director

Ad Qamhieh Director

loni

Senior Analyst, Environmental Analysis Unit

P.O.Box: 14 BIRZEIT, PALESTINE . PHONE: 972-2-2982010 . FAX: 972-2-2982166 e-mail: bzutl@birzeit.edu

[NA] Not socredited

C Informed by clieni

Page 2 nf 2

(A) Acredited

Analytical Report

Report Date	: 05 June 2023	
-------------	----------------	--

مروان منصور شعيبي : Customer

	Sample Code	ES-20238672	
ę,	Source Sample Code	water	
	Sample Name		
	Sample Receiving Date	20 May 2023	
	Sampling date	A vie and	
	Category	Water	
	Batch No.		
	Sample Size	500 mi	
	Origin	-	Exn.Date
	Prod.Date	mile and	manage
	Container Type	Plastic	
	Sample Condition	ok الروان ملصور شعیبی	
	Sampled By		

	Posult	Method	Comments
Test	AGO MicroS/cm	StMe	
Cenductivily	1.71 opm	ICP	
] Potassium (K)	7.62	StMe	
pH	40.43 ppn)	HPIC	
Chloride	17.54 ppm Not Detected	HPIC	
Sulfates (SU4)		HPIC	
Bromide	5.52 ppm	HPIC	
Nilates (NO3)	28,0 ppm	ICP	
Aj Galcium (Na) Aj Galcium (Ca) At Mannesium (Mg)	46.1 ppm	ICP ICP StMe	
	11.9 ppm		1 - States
Phosphate (PO4)	0.21 ppm		(all all and the second

Notes: The Center is only responsible for the results of the sample tested. This report must not be reissued without the written approval of the Center's director

10 Adi Qamhien

Director

ann

Senior Analyst, Environmental Analysis Linit

P.O.Box: 14 BIRZEIT, PALESTINE . PHONE: 972-2-2982010 . FAX: 972-2-2982166 e-mail: bzutl@birzeit.edu

Page 1 of 2

[A] Acredited

UNINE
Appendix B: X-ray reports and SEM images

Sample: Sample#1

Sample Data

File name File path

Data collected Data range Original data range Number of points Step size Rietveld refinement converged Alpha2 subtracted Background subtr. Data smoothed 2theta correction Radiation Wavelength Sample#1.raw G:/.shortcut-targets-by-id/16KIMvpSIqVAUHFFggq9IVgYQzQybBTlu/Marwan - research/Concrete Mix Master Thesis/X-Ray/Birzeit University_XRD_Raw data Jul 13, 2023 07:39:20 4.980° - 89.980° 5.000° - 90.000° 4251 0.020 No No No No -0.020 X-rays 1.540598 Å

Analysis Results

Phase composition (Weight %)

Elemental composition (Weight %)

IndexAmountName Formula sum I			Element	Amount (weight %)	
	(%)			0	32.5%(*)
Α	1.0	Yttrium oxide	O3 Y2	V	20.9%
В	16.8	Vanadium oxide (5/9)	O9 V5	Fe	8.8%
С	1.9	Tris(dibromophosphazene)	Br6 N3 P3	Р	7.9%
D	0.5	Thallium tungsten oxide (2/4/13)	O13 TI2 W4	Nb	7.5%
E	7.2	Rubidium tecto-phosphatodiniobate	Nb2 O8 P Rb	1	3.8%
F	4.8	Rubidium niobium tungsten oxide (12/30/3/90)	Nb30 O90 Rb12 W3	Rb	2.3%
G	19.3	Potassium tecto-phosphatovanadate(III) *	K O24 P7 V4		
н	1.9	Potassium iodate telluric acid	H6 I K O9 Te	TI	1.6%
1	4.6	Niobium thallium oxide hydrate (33/10.5/88.5/1.5)	H3 Nb33 O90 Tl10.5	Mo	1.5%
	12.8	Iron(III) vanadium oxide (6.5/11.5/35)	Fe6.5 O35 V11.5	Br	1.5%
K	11.5	Iron(III) tris(phosphate) trihydroxide	Fe4 H3 O15 P3	Ba	1.4%
L	4.7	Iron vanadium molybdenum oxide (4/1.98/3.02/20)Fe4 Mo3.02 O20 V1.98	K	1.1%
Μ	1.3	Dineodymium tetrabarium dicopper oxide	Ba4 Cu2 Nd2 O9	Sb	1.0%
N	0.7	Diantimony telluride diselenide	Sb2 Se2 Te	Cs	0.9%
0	2.6	Chromium uranium(V) oxide	Cr O4 U	W	0.8%
Р	1.9	Caesium zinc phosphate(V) - I	Cs O4 P Zn	Y	0.7%
Q	1.2	Cadmium arsenide iodide (2/3/1)	As3 Cd2 I	Те	0.7%
R	1.1	Barium boride (1/6)	B6 Ba	Se	0.7%
S	1.8	Antimony selenide iodide	I Sb Se	Cd	
Т	2.4	Ammonium trio-triiodide	H4 I3 N	As	0.5%
	0.5	Unidentified peak area		Zn	0.4%
				Cr	0.4%
Amou	nts calc	ulated by RIR (Reference Intensity Ratio) method		Nd	0.3%
				В	0.3%(*)
				N	0.2%(*)
				Cu	0.2%
				*LE (sum)	33.1%

Details of identified phases

A: Yttrium oxide (1.0 %)*

Sample: Sample_3

Sample Data

File name File path

Data collected Data range Original data range Number of points Step size Rietveld refinement converged Alpha2 subtracted Background subtr. Data smoothed 2theta correction Radiation Wavelength

Sample#3.raw G:/.shortcut-targets-by-id/16KIMvpSIqVAUHFFggq9IVgYQzQybBTlu/Marwan - research/Concrete Mix Master Thesis/X-Ray/Birzeit University_XRD_Raw data Jul 13, 2023 13:02:42 4.880° - 89.880° 5.000° - 90.000° 4251 0.020 No No No No -0.12° X-rays 1.540598 Å

Analysis Results

Phase composition (Weight %)

Elemental composition (Weight %)

IndexAmountName Formula sum		Element	Amount (weight %)		
	(%)			0	25.0%(*)
А	1.2	Titanium hexaniobium dithallium oxide	Nb6 O18 Ti Tl2	Ba	10.3%
		Thallium niobium uranium oxide (1/2/2/11.5)	Nb2 O11.5 TI U2	F	10.0%(*)
С	8.4	Sodium strontium iron(III) hexafluoride	F6 Fe Na Sr	Р	9.6%
D	5.6	Sodium dirubidium tecto-hexaniobotriphosphate(V)	Na Nb6 O24 P3 Rb2	Nb	7.3%
E	3.8	Rubidium niobium tungsten oxide (12/30/3/90)	Nb30 O90 Rb12 W3	Fe	5.2%
F	17.4	Potassium tecto-phosphatovanadate(III) *	K O24 P7 V4	V	5.1%
G	1.0	Potassium phosphorus tungsten oxide (.4/2/4/16)	K0.4 O16 P2 W4	Ca	4.9%
Н	3.9	Niobium thallium oxide hydrate (33/10.5/88.5/1.5)	H3 Nb33 O90 TI10.5	Мо	4.0%
1	7.9	Iron vanadium molybdenum oxide (4/1.98/3.02/20)	Fe4 Mo3.02 O20 V1.98	Ni	3.3%
J	4.8	Heptabarium copper hexairon(III) fluoride	Ba7 Cu F34 Fe6	Sr	2.6%
K	4.9	Heptabarium bis(16-fluorotriferrate(III)) dihydrate	Ba7 F32 Fe6 H4 O2	TI	2.3%
L	0.9	Dineodymium tetrabarium dicopper oxide	Ba4 Cu2 Nd2 O9	Cs	1.5%
Μ	8.2	Dibarium octafluorotriniccolate decafluorotetraniccola	teBa2 F18 Ni7		
N	1.0	DICADMIUM TRIARSENIDE BROMIDE	As3 Br Cd2	Rb	1.5%
0	15.4	Calcium diphosphate - \b	Ca2 O7 P2		
Р	4.8	Caesium oxomolybdenum(V) diphosphate	Cs Mo O8 P2	W	1.0%
Q	0.4	Cadmium lead(IV) oxide - I	Cd O3 Pb	K	0.8%
R	0.5	Bismuth lead barium lanthanum copper oxide	Ba Bi Cu La O6 Pb	Na	0.8%
S	1.3	Barium molybdenum phosphate (1/2/3)	Ba Mo2 O12 P3	Cd	
Т	5.3	Barium gallium fluoride hydroxide hydrate (7/6/16/16/	2)Ba7 F16 Ga6 H20 O18	As	0.4%
	0.6	Unidentified peak area	, ,	Pb	0.3%
				Cu	0.3%
Amou	nts calc	ulated by RIR (Reference Intensity Ratio) method		Nd	0.2%
				Br	0.2%
				Bi	0.1%
				La	0.1%
				Ti	0.0%
				*LE (sum)	35.1%

Details of identified phases

A: Titanium hexaniobium dithallium oxide (1.2 %)

Sample: Sample#7

Sample Data	
File name	Sample#7.raw
File path	G:/.shortcut-targets-by-id/16KIMvpSIqVAUHFFggq9IVgYQzQybBTlu/Marwan - research/Concrete Mix Master Thesis/X-Ray/Birzeit University_XRD_Raw data
Data collected	Jul 13, 2023 07:16:32
Data range	5.030° - 90.030°
Original data range	5.000° - 90.000°
Number of points	4251
Step size	0.020
Rietveld refinement converged	No
Alpha2 subtracted	No
Background subtr.	No
Data smoothed	No
2theta correction	0.03°
Radiation	X-rays

1.540598 Å

Analysis Results

Phase composition (Weight %) Elemental composition (Weight %) Bariuth alicate berthenate coop4.%) Thallium niobium uranium oxide / Sodium strontium iro Cu (2 0 (26.3%) Copper dipotassiu Cr (2.9% K (3.0%) Sodium dirubidi.. Fe (3.6%) Rubidium niob. Mo (3.9%) Dibarium octa TI (4.1%) Nb (9.6%) Dithallium distro. Ba (4.1%) Potassium tecto-p... Ni (4.3%) Iron vanadium molyb. P (7.7%) Sr (4.4%)/ V (5.6%)/ Merenny ehromium strante. (...) Nonacaesium tecto-trialumonon.. F (6.9%) Index AmountName Formula sum Element Amount (weight %) (%) 26.3% 0 4.0 Thallium niobium uranium oxide (1/2/2/11.5) Nb2 O11.5 TI U2 Nb 9.6% В 2.2 Thallium niobium oxide (8/27.2/72) Nb27.2 O72 TI8 Na1.7 O44 P4 W12 С 1.0 Sodium tungstate phosphate * F V 6.9%(*) D 82 Sodium strontium iron(III) hexafluoride F6 Fe Na Sr 5.6% Na Nb6 O24 P3 Rb2 Sodium dirubidium tecto-hexaniobotriphosphate(V) Rubidium niobium tungsten oxide (12/30/3/90) Sr 4.4% 6.0 Nb30 O90 Rb12 W3 Ni 4.3% 4 4 G K O24 P7 V4 19.6 Potassium tecto-phosphatovanadate(III) * Ba 4.1% н Nonacaesium tecto-trialumononamolybdo(V)undecaphosphate(V) Al3 Cs9 Mo9 O59 P11 тι 4.1% 4.2 Niobium thallium oxide hydrate (33/10.5/88.5/1.5) 4 2 H3 Nb33 O90 TI10.5 NIOBIUM THALLIUM OXIDE (3.1/1/8.2) Nb3.09 O8.22 TI Fe 3.6% K Mercury chromium strontium copper carbonate oxide (0.46/0.54/4/2/1/6.88)C Cr0.54 Cu2 Hg0.46 O9.88 Sr4 κ 1.5 3.0% L 8.3 Iron vanadium molybdenum oxide (4/1.98/3.02/20) Fe4 Mo3.02 O20 V1.98 Cr 2.9% Μ 1.4 Hexastrontium trinitridodicuprate(I) dinitridocuprate(I) Cu3 N5 Sr6 Cu 2.7% Ν 1.0 Dithallium distrontium copper oxide Cu O6 Sr2 Tl2 Bi 2.5% Dibarium octafluorotriniccolate decafluorotetraniccolate Ba2 F18 Ni P Copper dipotassium dihydrogen phosphatochromate Cr2 Cu H2 K2 O14 P2 14.6 Rb 1.6% Q Bismuth molybdenum oxide (26.4/9.6/68.4) Bi26.4 Mo9.6 O68.4 2.0 Cs 1.5% R Bismuth barium lanthanum copper oxide (2/2.3/0.7/2/8) Ba2.3 Bi2 Cu2 La0.7 O8 W 1.1% 1.5 Na 0.8% Ba Ge3.125 O9 Si0.875 1 4 Barium silicate germanate Ge 0.6% 0.1 Unidentified peak area La 0.3% Amounts calculated by RIR (Reference Intensity Ratio) method Ν 0.1%(*) AI 0.1% С 0.0%(*)

Details of identified phases

Wavelength

A: Thallium niobium uranium oxide (1/2/2/11.5) (4.0 %)* Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell I/Ic Calc. density Reference

Nb2 O11.5 TI U2 96-100-1356 0.612747^{*} 497 128 0.47^{*} P m n b orthorhombic a= 7.7130 Å b= 10.3290 Å c= 13.9470 Å 4.52 6.278 g/cm³ Gasperin M, "Synthese et structure de trois niobouranates d'ions monovalents: TINb~2~ U~2~ O~11.5~, K Nb U O~6~, et Rb Nb U O~6~", Journal of Solid State Chemistry **67**, 219-224 (1987)

*LE (sum)

33.4%

B: Thallium niobium oxide (8/27.2/72) (2.2 %)^{*}

Sample: Sample_B

Sample Data File name

File path

Data collected Data range Original data range Number of points Step size Rietveld refinement converged Alpha2 subtracted Background subtr. Data smoothed 2theta correction Radiation Wavelength Sample#B.raw G:/.shortcut-targets-by-id/16KIMvpSIqVAUHFFggq9IVgYQzQybBTlu/Marwan - research/Concrete Mix Master Thesis/X-Ray/Birzeit University_XRD_Raw data Jul 13, 2023 08:02:51 4.950° - 89.950° 5.000° - 90.000° 4251 0.020 No No No No No No No No 1.540598 Å

Analysis Results

Elemental composition (Weight %)

Phase composition (Weight %)

Index	IndexAmountName F		Formula sum	Element	Amount (weight %)
A	1.1	Vttrium oxide	03 1/2	V	13.5%
В	14.6	Vanadium oxide (5/9)	09 V5		100000
C	3.4	Sodium nitrate Nitratine	N Na D3	P	5 6%
D	10.9	Silicon oxide \$-aloha Quartz low	02 Si	Ni	4:3%
Ē		Protect data of april address for	MICE CREATERING	Nb	4 1%
1	17.4	Processium texto-phosphatovanedater(0) h	K 004 P2 MA	Ca	3.9%
				Ba	3.6%
H	2.9	Potassium barium phosphate	Bak O4 P	AL	3 4 96
1	4.3	Niobium thallium oxide hydrate (33/10 5/88 5/1.5)	H3 Nb33 Q90 TI10 5	F	1.000
1	0.6	Holmium oxide	Ho2 O3	Ti	3.0%
K	0.7	Hexastronilum Innihidodicuprate(I) dinihidocuprate(I)	CU3 N5 Sr6		COLUMN TO A
L	0.5	Dysprosium oxide	Dv2 03	TI	1.4%
M	2.7	Dinickel diphosphate	Ni2 07 P2		3,475
N	75	Dibe our octalloprotonicco al decalloprotoniccold	0B32 F10 M7	1	1.2%
0	23	Chromium uranium(V) oxide	Cr O4 U	Na.	0.9%
P	3.6	Calcium carbonate Calcite	C Ca O3	Y	0.9%
0	1.9	Caesium zinc phosphate(V) - I	Cs O4 P Zn	Cs	0.8%
R	1.9	Antimony selenide iodide	I Sb Se	Rb	0.8%
S	11.5	Aluminium pentaoxotitanate	AI2 05 Ti	Sb	0.7%
100	6.5		CH710752	N	0.6%(*)
	1.7	Unidentified peak area			ALCOLD .
				Sr	0.5%
Amou	nts calc	ulated by RIR (Reference Intensity Ratio) method		EN	0.5%
				2.4	-

Sample: Sample_G

Sample Data File name File path

Data collected Data range Original data range Number of points Step size Rietveld refinement converged Alpha2 subtracted Background subtr. Data smoothed 2theta correction Radiation Wavelength Sample_G.raw G:/.shortcut-targets-by-id/16KIMvpSIqVAUHFFggq9IVgYQzQybBTlu/Marwan - research/Concrete Mix Master Thesis/X-Ray/Birzeit University_XRD_Raw data Jul 13, 2023 09:18:14 4.800° - 89.800° 5.000° - 90.000° 4251 0.020 No No No No No No No No X-rays

Analysis Results

Phase composition (Weight %)

1.540598 Å

Index	Amour (%)	ntName	Formula sum	Element O	Amount (weight %) 26.6%(*)
Α	1.7	Tris(dibromophosphazene)	Br6 N3 P3	Nb	10.3%
В	0.4	Thallium Thallium(III) niobium oxide (1.7/0.3/2/6.3)	Nb2 O6.271 Tl2	Р	9.4%
С	6.3	Rubidium tecto-phosphatodiniobate	Nb2 O8 P Rb	Ba	9.2%
D	4.0	Rubidium niobium tungsten oxide (12/30/3/90)	Nb30 O90 Rb12 W3	Ni	7.0%
E	16.8	Potassium tecto-phosphatovanadate(III) *	K O24 P7 V4	F	5.8%(*)
F	2.2	Potassium iodate telluric acid	H6 I K O9 Te	V	4.8%
G	3.0	Potassium barium phosphate	Ba K O4 P	ĸ	3.0%
н	4.0	Niobium thallium oxide hydrate (33/10.5/88.5/1.5)	H3 Nb33 O90 TI10.5	Cs	3.0%
			Fe1.75 O11 Pb V4.25	Cr	2.5%
J	1.1	Hexastrontium trinitridodicuprate(I) dinitridocuprate(I)	Cu3 N5 Sr6	CI	2.0%
K	8.7	Dibarium octafluorotriniccolate decafluorotetraniccolate	Ba2 F18 Ni7	Rb	2.0%
L	8.8	Dibarium octafluorotriniccolate decafluorotetraniccolate	Ba2 F18 Ni7	Cu	1.6%
Μ	11.2	Copper dipotassium dihydrogen phosphatochromate	Cr2 Cu H2 K2 O14 P2	Mo	1.5%
N	2.2	Chromium uranium(V) oxide	Cr O4 U	TI	1.5%
0	6.6	Calcium dibarium bis(hydrogenphosphate(V)) bis(dihydrogenphosphate(V))	Ba2 Ca H6 O16 P4	Ca	1.5%
Р	4.1	Calcium chloride dihydrate Sinjarite	Ca Cl2 H4 O2		
Q	4.9	Caesium niobium phosphate (1/3/3)	Cs Nb3 O15 P3	Br	1.3%
R	6.8	Caesium hydrogen molybdatodiphosphate	Cs H Mo O9 P2	1	1.3%
S	3.2	Barium bistriniobate hydrate	Ba H2 Nb6 O17	Sr	0.8%
Т	1.7	Antimony selenide iodide	I Sb Se	Pb	0.7%
	0.8	Unidentified peak area		Sb	0.6%
				Те	0.6%
Amounts calculated by RIR (Reference Intensity Ratio) method			Se	0.4%	
				W	0.4%
				Fe	0.3%
				Ν	0.2%(*)
				*LE (sum)	32.9%

Details of identified phases

A: Tris(dibromophosphazene) (1.7 %) Br6 N3 P3 Formula sum 96-100-8091 Entry number Figure-of-Merit (FoM) 0.628316* Total number of peaks 500 Peaks in range 500 156 Peaks matched Intensity scale factor 0.19 Space group Pnma orthorhombic Crystal system a= 6.6300 Å b= 13.3600 Å c= 14.4300 Å Unit cell 3 55 I/Ic

Sample: Sample_H

Sample Data File name File path

Data collected Data range Original data range Number of points Step size Rietveld refinement converged Alpha2 subtracted Background subtr. Data smoothed 2theta correction Radiation Wavelength Sample_H.raw G:/.shortcut-targets-by-id/16KIMvpSIqVAUHFFggq9IVgYQzQybBTlu/Marwan - research/Concrete Mix Master Thesis/X-Ray/Birzeit University_XRD_Raw data Jul 13, 2023 12:11:51 4.900° - 89.900° 5.000° - 90.000° 4251 0.020 No No No No No -0.1° X-rays 1.540598 Å

> AI (3.7%) K (4.0%)

> > Na (4.4%

Ni (5.1%)

Ba (5.5%)/

Analysis Results

Phase composition (Weight %)

0 (15.1%)

ND (5.6%)

Elemental composition (Weight %)

IndexAmountName F		Formula sum	Element	Amount (weight %)	
ABCOMEGI-	(%) 1.0 1.2 10.1 17.5 5.0 2.7 8.1 3.4 5.3	Thallium Thallium(III) niobium oxide (1.4/0.6/2/6.6) Tetraamminepalladium chromate Sodium calcium pentafluoroaluminate fluoride - \$-beta Sodium calcium hexafluoroaluminate fluoride - \$-beta Rubidium niobium tungsten oxide (12/30/3/90) Rubidium niobium cyclo-trigemanate Potassium tecto-divanadato(III)tetraphosphate Potassium nitrate - \g Niobium thallium oxide hydrate (33/10.5/88.5/1.5)	Nb2 O6.648 T12 Cr H12 N4 O4 Pd Al Ca F6 Na Al Ca F6 Na Nb30 O90 Rb12 W3 Ge3 Nb O9 Rb K6 O16 P4 V2 K N O3 H3 Nb33 O90 T110.5		75, 7%(1) 5,8% 5,5% 5,1% 4,0% 3,7% 3,8%
ŝ	6.8	Magnesium coball diphosphate (1.1/0.9/1)	Co0.92 Mg1.08 O7 P2	TI	2.8%
L	0.9	Iron vahabium molybdenum oxide (4/1 98/0.02/20) Europium strontium copper oxide (1 3/1 7/2/5 65)	Evel Mo3 02 O20 VI 08 Cu2 Eu1 3 O5 65 Srf.7	Mn	1.9%
O P	4.6	Disodium tribarium tetrachromium fluoride Disodium manganese chromium fluoride	Ba3 Cr4 F20 Na2 Cr F7 Mn Na2	tao.	1.4%
R	-	Diharium octaliluorotriniccolate decalluorotetraniccolate Dibarium octaliluorotriniccolate decalluorotetraniccolate	Ba2 F18 NI7	La Fe	1.3%
Ť	2.0 0.9	Barium tantalum oxide (5.5/21.8/60) Unidentified peak area	Ba5.5 O60 Ta21.8	Go	1.1%
Amour	nts calc	ulated by RIR (Reference Intensity Ratio) method		N P S G E	0.7%(*) 0.7% 0.5 0.5% 0.3%

Sample: Sample_J

Sample Data File name File path

Data collected Data range Original data range Number of points Step size Rietveld refinement converged Alpha2 subtracted Background subtr. Data smoothed 2theta correction Radiation Wavelength Sample_J.raw G:/.shortcut-targets-by-id/16KIMvpSIqVAUHFFggq9IVgYQzQybBTIu/Marwan - research/Concrete Mix Master Thesis/X-Ray/Birzeit University_XRD_Raw data Jul 13, 2023 08:55:21 4.920° - 89.920° 5.000° - 90.000° 4251 0.020 No No No No No No 1.08° X-rays 1.540598 A

Analysis Results

Phase composition (Weight %)

Elemental composition (Weight %)

Index	Amoun (%)	ntName	Formula sum	Element	Amount (weight %) 30.5%(*)
A	17.0	Vanadium oxide (5/9)	09 V5	V.	75.6%
B	3.8	Telluric acid bis(caesium chloride)	CI2 Cs2 H6 O6 Te	P	7.3%
C	10.6	Sodium calcium pentafluoroaluminate fluoride - \$-beta	aAI Ca F6 Na	F	8.9%/1
D	3.7	Rubidium nioblum lungsten oxide (12/30/3/90)	N630 O90 R612 W3	AU	5.3%
E	18.7	Potassium tecto-phosphatovanadate(III) *	K 024 P7 V4	Nb	3.8%
F	1.8	Potassium lodate telluric acid	H61K O9 Te	T	3.0%
				Cis	2.6%
111	1.1	Procession Indilliem on cein ydrate (2010) 531 51 51	118 N088 D99 TH0.5	Ca	2.1%
1.	4.7	Magnesium cobalt diphosphate (1.1/0.9/1)	Col. 92 Mg1.08 O7 P2	6	7.0%
1	1.3	Lanthanum zühlbium onde (4/3/f)	LaA (I Fill	Ba	1.5%
10	40	from verredium maryndienum awae (dr.1.98(3.02/29)	Fe4 Mid3 02 (020 1/ 1/98	Ge	1.5%
L	1.0	Hexastrontium trinitridodicuprate(1) dinitridocuprate(1)	Cu3 N5 Sr6	Ni	1.5%
M	3.7	Dinickel diphosphate	NI2 07 P2	K	1.5%
N	0.8	Dilead dioxophosphatobismuthate	BI O6 P Pb2	TI	1.4%
0	0.0	Diamany followide divelopment	362 5c2 Te		
P	3.2	Dialuminium digermanate	Al2 Gg2 07	0.0	1.3%
Q	21	Chromium uranium(V) oxide	Cr O4 U	444	13%
R	1.8	Caesium zinc phosphate(V) - I	Cs O4 P Zn	Sb	1.2%
8	2.2	Antimony setenide iodide	TS5 Sc	Na	1.2%
T	11.3	Aluminium pentaoxotitanate	AI2 OS TI	Co	1.0%
	1.4	Unidentified peak area		Fe	1.0%
		Real Contemports in the second second second		6.0	0.9%
Amou	nts calc	ulated by RIR (Reference Intensity Ratio) method		8.6	0.0 %
				Sr	0.7%
				Dir.	in mark

Sample: Sample_N

Sample Data File name File path

Data collected Data range Original data range Number of points Step size Rietveld refinement converged Alpha2 subtracted Background subtr. Data smoothed 2theta correction Radiation Wavelength Sample_N.raw G:/.shortcut-targets-by-id/16KIMvpSIqVAUHFFggq9IVgYQzQybBTlu/Marwan - research/Concrete Mix Master Thesis/X-Ray/Birzeit University_XRD_Raw data Jul 13, 2023 10:36:48 4.710° - 89.710° 5.000° - 90.000° 4251 0.020 No No No No No No No No No

Analysis Results

Phase composition (Weight %)

Elemental composition (Weight %)

Index	Amour	tName	Formula sum	Element	Amount (weight %)
	(%)	The interaction	4-0.7-0	0	33.0%()
A	1.1	Zinc arsenide	ASZ ZN3	P	9.2%
В	5,5	Incadmium arsenide trichlonde	As Cd3 Cl3		
6	0.4	Detailant cx(c)	OG TB2		
-					
-	124	manual and a standard in the second standard in	O enternal		1.1 .
F	17.7	Potassium tecto-phosphatovanadate(III) *	K 024 P7 V4		4 0 11 7
G	9.5	Magnesium hydroxide sulfate hydrate (1.3/.7/1/.3)	H1.3332 Mg1.3333 O4.9999 S	10	3.2"0
н	7.7	Magnesium bis(hydrogensulfate)	H2 Mg O8 S2	00	3.0%
1	3.8	Iron vanadium molybdenum oxide (4/1.98/3.02/20)Fe4 Mo3.02 O20 V1.98		3,0%
J	0.5	Dyspresium oxide	Uy2 O3	De	2.0%
10.0	12.4	Dibait dim/Whends Landata	112 Q7 Pb2 bird	As	2.2%
L	0.4	Dilead dilm(IV) exide 0.1-hydrate	H1.4 06.7 Pb2 Sh2	Ba	1.9%
M	0.4	Dilgad ditre Mr celde	O6 Ph3 SH2	Sb	1.9%
N	5.3	Dibarium hexairon(III) oxide	Ba2 Fe6 O11		
0	3.6	Chromium(II) enromum Reende	C(2 F3		14%
P	4.4	Caesium tetrafluorocobaltate	Co Cs F4	Nb	1.3%
0	3.6	Caesium nioblum phosphate (1/3/3)	Cs Nb3 015 P3	Rb	1.3%
R	0.7	Cadmium tetravttrium trimolybdenum oxide	Cd Mo3 O16 Y4	AL	1.2%
9	3.6	Cadmium arsenic chloride *	As Cd2 Cl2	Ca	1.0%
T	12.1	Aluminium catena-phosphate	AL 09 P3	- 20	1.0%
1	20	Unidentified neak area	10 - C C C	20	0.8%
	2.0	ondenined peak area		Ph	0.6%
Amou	nts calo	ulated by RIR (Reference Intensity Ratio) method		Die	0.070
				Th	TT ANY
				50	1) 206
				2	0.000
				τ.	10.2%
				"LE (sum)	40.3%

Sample: Sample#U

Sample Data File name File path

Data collected Data range Original data range Number of points Step size Rietveld refinement converged Alpha2 subtracted Background subtr. Data smoothed 2theta correction Radiation Wavelength Sample#U.raw G:/.shortcut-targets-by-id/16KIMvpSIqVAUHFFggq9IVgYQzQybBTlu/Marwan - research/Concrete Mix Master Thesis/X-Ray/Birzeit University_XRD_Raw data Jul 13, 2023 08:25:35 4.940° - 89.940° 5.000° - 90.000° 4251 0.020 No No No No No No No X-rays

Analysis Results

Phase composition (Weight %)

1.540598 Å

Elemental composition (Weight %)

IndexAmountName Formula sum			Element	Amount (weight %)	
Δ	0.8	Tetrastrontium nonaoxotriniccolate	Ni3 O9 Sr4	P	12 1%
B	9.2	Sodium calcium pentafluoroaluminate fluoride - \$-beta	Al Ca F6 Na	F	10.6%(*)
C	3.5	Rubidium niobium tungsten oxide (12/30/3/90)	Nb30 090 Rb12 W3	Ca	8.3%
D	2.5	Rubidium niobium oxide phosphate (1/3/3/3)	Nb3 O15 P3 Rb	Ba	8.2%
F	14.0	Potassium tecto-phosphatovanadate(III) *	K 024 P7 V4	V	5.7%
F	3.1	Nonacaesium tecto-trialumononamolybdo(V)undecanhosphate(V)AI3 Cs9 Mo9 O59 P11	Nb	5.0%
G	3.3	Niobium thallium oxide hydrate (33/10 5/88 5/1 5)	H3 Nb33 O90 TI10 5	Fe	4 4%
Ĥ	2.8	Nickel divanadium oxide	Ni O6 V2	Ni	3.8%
- ï -	17	NIOBIUM THAI LIUM OXIDE (3 1/1/8 2)	Nb3 09 08 22 TI	Na	3.2%
j.	8 1	Iron phosphate fluoride hydroxide hydrate (1 2/1/0 5/0 2/0 4)	F0 45 Fe1 21 H0 92 O4 55 P	TI	2.1%
ĸ	4 1	Heptabarium copper hexairon(III) fluoride	Ba7 Cu F34 Fe6	AI	1.3%
Ë.	0.8	Dithallium distrontium copper oxide	Cu O6 Sr2 Tl2	Cs	1.1%
M	13.2	Disodium calcium bis(hydrogenphosphate(V))	Ca H2 Na2 O8 P2	Rb	0.9%
N	4.4	Dibarium oxovanadium(IV) bis(vanadate(V))	Ba2 O9 V3	Mo	0.8%
0	72	Dibarium octafluorotriniccolate decafluorotetraniccolate	Ba2 F18 Ni7		0.8%
P			As3 Br Cd2	As	0.8%
0	14 4	Calcium diphosphate - \b	Ca2 07 P2	ĸ	0.6%
R	0.9	Cadmium arsenide iodide (2/3/1)	As3 Cd2 I	Sr	0.6%
S	0.8	Barium silicate germanate *	Ba Ge3.125 O9 Si0.875	W	0.3%
T	4.1	Barium copper(II) iron fluoride (7/1/6/34)	Ba7 Cu F34 Fe6	Cu	0.3%
	1.7	Unidentified peak area		Ge	0.3%
				1	0.2%
Amounts calculated by RIR (Reference Intensity Ratio) method			Br	0.1%	
		· · · · · ·		H	0.1%(*)
				Si	
				*LE (sum)	39.1%

Details of identified phases

A: Tetrastrontium nonaoxotriniccolate (0.8 %)* Ni3 O9 Sr4 Formula sum Entry number 96-100-4110 Figure-of-Merit (FoM) 0.621800 Total number of peaks 281 281 Peaks in range 41 Peaks matched Intensity scale factor 0.15 Space group P321 Crystal system trigonal (hexagonal axes) Unit cell a= 9.4770 Å c= 7.8250 Å l/lc 4.86 Meas. density 5.400 g/cm³

Sample No. 1

Sample No. 3

mag 🗆 40 000 v

Sample No. 7

Sample No. B

Sample No. G

Sample No. H

Sample No. J

Sample No. N

Sample No. O

Sample No. R

Sample No. U

Sample No. X

Appendix C: MATLAB output images

Appendix A: Water samples test results

Analytical Report

Report Date : 05 June 2023

مروان منصور شعيبي : Customer ،

	Sample Code	ES-20238666	
	Source Sample Code		
•	Sample Name	زيبار حديث ز	
	Sample Receiving Date	20 May 2023	
	Sampling date		
	Category	Waste Water	
	Batch No.	3	
	Sample Size	500 ml	
	Origin	4	
	Prod.Date	24 (2000 - 20	Exp.Date
	Container Type	Plastic	
	Sample Condition	ok	
÷.	Sampled By	مروان منصور شعيبي *	

Test	Result	Method	Comments
Conductivity	11255 MicroS/cm	StMe	
IAI Potassium (K)	3996.0 ppm	ICP	
Dry matter	5.13 %	StMe	
Organic Content	40%	StMe	
Ash	1.14 %	StMe	
pH	4.66	StMe	
Chloride	1152.29 ppm	HPIC	
Sulfates (SO4)	347.96 ppm	HPIC	
Bromide	Not Detected	HPIC	
Nitrates (NO3.)	141.09 ppm	HPIC	CERTIFICE STATES
(A) Sodium (Na.)	244.4 ppm	ICP	alit ente
(NA) Specific Weight	9.95	StMe	1548
[A] Calcium (Ca)	192.2 ppm	ICP	BIR

Notes: The Center is only responsible for the results of the sample tested. This report must not be reissued without the written approval of the Center's director

5

Adi Qamhieh

Director

* 1 0 8 3 4 1 1 *

Senior Analýst, Environmental Analysis Unit

P.O.Box: 14 BIRZEIT, PALESTINE . PHONE: 972-2-2982010 . FAX: 972-2-2982166 e-mail: bzutl@birzeit.edu

Page 1 of 2

LAIN

[NA] Not accredited

*IC Informed by client

[A] Acredited

BIRZEIT UNIVERSITY

Analytical Report

Report Date	: 05 June 2023	
Customer	مروان منصور شعيبي :	

Sample Code	ES-20238666		
Source Sample Code			
Sample Name	ز يبار حديث		
Sample Receiving Date	20 May 2023		
Category	Waste Water		
Batch No.			
Sample Size	500 ml		
Origin			
Prod.Date	** *\$	Exp.Date	
Container Type	Plastic		
Sample Condition	ck		
Sampled By	مروان منصور شعيبي *		

Test	Result	Method	Comments	
[A] Magnesium (Mg)	146.3 ppm	ICP		
Phosphate (PO4)	747.4 ppm	StMe		

Notes: The Center is only responsible for the results of the sample tested. This report must not be reissued without the written approval of the Center's director

Adi Qamhieh Director

Senior Analyst, Environmental Analysis Unit

P.O.Box: 14 BIRZEIT, PALESTINE . PHONE: 972-2-2982010 . FAX: 972-2-2982166 e-mail: bzutl@birzeit.edu

Page 2 of 2

[NA] Not accredited

[S] Subcontractor

*IC Informed by client

[A] Acredited

Report Date

Customer

Analytical Report

	Sample Code	ES-20238665	
63	Source Sample Code		
Ļ	Sample Name	زيبار قديم	
	Sample Receiving Date	20 May 2023	
	Sampling date		
	Category	Waste Water	
	Batch No.	22 02	
	Sample Size	500 ml	
	Origin	2.52	
	Prod.Date	0.31	Exp.Date
	Container Type	Plastic	
	Sample Condition	ok	
*	Sampled By	مروان متصور شعيبي *	

: 05 June 2023

مزوان منصور شعيبي :

Test	Result	Method	Comments
Conductivity	11436 MicroS/cm	StMe	
[A] Potassium (K)	4474.0 ppm	ICP	
Dry matter	4.44 %	StMe	
Organic Content	3.36 %	StMe	
Ash	1.08 %	StMe	
рH	4.35	StMe	
Chloride	1046.02 ppm	HPIC	
Sulfates (SO4)	340.62 ppm	HPIC	
Bromide	Not Detected	HPIC	
Nitrates (NO3)	156.92 ppm	HPIC	
[A] Sodium (Na)	208.0 ppm	ICP	
[NA] Specific Weight	9.98	StMe	ALL MARTIN
[A] Calcium (Ca)	194.0 ppm	ICP	and the second

Notes: The Center is only responsible for the results of the sample tested control of the Center's director This report must not be reissued without the written approval of the Center's director

10

Adi Qamhieh Director

Etailoni

Senior Analyst, Environmental Analysis Unit

P.O.Box: 14 BIRZEIT, PALESTINE . PHONE: 972-2-2982010 . FAX: 972-2-2982166 e-mail: bzutl@birzeit.edu

Page 1 of 2

[NA] Not accredited

[S] Subcontractor

'IC Informed by clien!

[A] Acredited

BIRZEIT UNIVERSITY

Analytical Report

Report Date	: 05 June 2023		
Customer	مروان متصور شعيبي :		

Sample Code	ES-20238665		
Source Sample Code			
Sample Name	زيبار قديم		
Sample Receiving Date	20 May 2023		
Category	Waste Water		
Batch No.			
Sample Size	500 ml		
Origin			
Prod.Date	£1	Exp.Date	
Container Type	Plastic		
Sample Condition	[:] ok		
Sampled By	مروان منصور شعيبي		

Test	Result	Method	Comments
[A] Magnesium (Mg)	158.1 ppm	ICP	
Phosphate (PO4)	942.2 ppm	StMe	

Notes: The Center is only responsible for the results of the sample tested. This report must not be reissued without the written approval of the Genter's director

Sie

Adi Qamhieh Director

bui

Senior Analyst, Environmental Analysis Unit

P.O.Box: 14 BIRZEIT, PALESTINE . PHONE: 972-2-2982010 . FAX: 972-2-2982166 e-mail: bzutl@birzeit.edu

[NA] Not accredited

*IC Informed by client

[A] Acredited

Page 2 of 2

Analytical Report

6 2020	
	18 2020

مروان منصور شعيبي : Customer •

	Sample Code	ES-20238672	
•	Source Sample Code		
•	Sample Name	* 20 May 2023	
	Sample Receiving Date		
	Category	Water	
	Batch No. Sample Size	500 ml	
	Origin	с. 1	Exp.Date
	Prod.Date Container Type	Plastic	
	Sample Condition	ok مروان منصور شعيبي	

	Result	Method	Comments
Test	460 MicroS/cm	StMe	
Conductivity	1.71 ppm	ICP	
[A] Potassium (N)	7.62	StMe	
рН	40.43 000)	HPIC	
Chloride	17.54 ppm	HPIC	
Sulfates (SO4)	Not Detected	HPIC	
Bromide	5.52 com	HPIC	
Nitrates (NO3)	28 0 ppm	ICP	
(A] Sodium (Na)	46.1 ppm	ICP	
[A] Calcium (Ca)	40.1 ppm	ICP	213 53 22-
[A] Magnesium (Mg)	11.9 ppm	StMe	ist new
Phosphate (PO4)	0.21 ppm	351731514	Contraction Contraction

Notes: The Center is only responsible for the results of the sample tested. This report must not be reissued without the written approval of the Center's director

22

Adi Qamhieh Director

nu

Senior Analyst, Environmental Analysis Unit

P.O.Box: 14 BIRZEIT, PALESTINE . PHONE: 972-2-2982010 . FAX: 972-2-2982166 e-mail: bzutl@birzeit.edu

Page 1 of 2

*IC Informed by client

[A] Acredited

Appendix B: X-ray reports and SEM images

Match! Phase Analysis Report

Sample: Sample#1

Sample Data

File name File path

Data collected Data range Original data range Number of points Step size Rietveld refinement converged Alpha2 subtracted Background subtr. Data smoothed 2theta correction Radiation Wavelength Sample#1.raw G:/.shortcut-targets-by-id/16KIMvpSIqVAUHFFggq9IVgYQzQybBTlu/Marwan - research/Concrete Mix Master Thesis/X-Ray/Birzeit University_XRD_Raw data Jul 13, 2023 07:39:20 4.980° - 89.980° 5.000° - 90.000° 4251 0.020 No No No No -0.020 X-rays 1.540598 Å

Analysis Results

Phase composition (Weight %)

Elemental composition (Weight %)

IndexAmountName Formula sum			Element	Amount (weight %)	
	(%)			0	32.5%(*)
Α	1.0	Yttrium oxide	O3 Y2	V	20.9%
В	16.8	Vanadium oxide (5/9)	O9 V5	Fe	8.8%
С	1.9	Tris(dibromophosphazene)	Br6 N3 P3	Р	7.9%
D	0.5	Thallium tungsten oxide (2/4/13)	O13 TI2 W4	Nb	7.5%
E	7.2	Rubidium tecto-phosphatodiniobate	Nb2 O8 P Rb	1	3.8%
F	4.8	Rubidium niobium tungsten oxide (12/30/3/90)	Nb30 O90 Rb12 W3	Rb	2.3%
G	19.3	Potassium tecto-phosphatovanadate(III) *	K O24 P7 V4		
н	1.9	Potassium iodate telluric acid	H6 I K O9 Te	TI	1.6%
1	4.6	Niobium thallium oxide hydrate (33/10.5/88.5/1.5)	H3 Nb33 O90 Tl10.5	Mo	1.5%
	12.8	Iron(III) vanadium oxide (6.5/11.5/35)	Fe6.5 O35 V11.5	Br	1.5%
K	11.5	Iron(III) tris(phosphate) trihydroxide	Fe4 H3 O15 P3	Ba	1.4%
L	4.7	Iron vanadium molybdenum oxide (4/1.98/3.02/20)Fe4 Mo3.02 O20 V1.98	K	1.1%
Μ	1.3	Dineodymium tetrabarium dicopper oxide	Ba4 Cu2 Nd2 O9	Sb	1.0%
N	0.7	Diantimony telluride diselenide	Sb2 Se2 Te	Cs	0.9%
0	2.6	Chromium uranium(V) oxide	Cr O4 U	W	0.8%
Р	1.9	Caesium zinc phosphate(V) - I	Cs O4 P Zn	Y	0.7%
Q	1.2	Cadmium arsenide iodide (2/3/1)	As3 Cd2 I	Те	0.7%
R	1.1	Barium boride (1/6)	B6 Ba	Se	0.7%
S	1.8	Antimony selenide iodide	I Sb Se	Cd	
Т	2.4	Ammonium trio-triiodide	H4 I3 N	As	0.5%
	0.5	Unidentified peak area		Zn	0.4%
				Cr	0.4%
Amou	nts calc	ulated by RIR (Reference Intensity Ratio) method		Nd	0.3%
				В	0.3%(*)
				N	0.2%(*)
				Cu	0.2%
				*LE (sum)	33.1%

Details of identified phases

A: Yttrium oxide (1.0 %)*

Formula sum	03 Y2
Entry number	96-100-9014
Figure-of-Merit (FoM)	0.601536 [*]
Total number of peaks	80
Peaks in range	80
Peaks matched	11
Intensity scale factor	0.24*
Space group	l a -3
Crystal system	cubic
Unit cell	a= 10.6056 Å
l/lc	9.22
Calc. density	5.029 g/cm ³
Reference	Baldinozzi G., Berar JF., Calvarin G., "Rietveld refinement of two-phase Zr-doped Y~2~O~3~", Materials Science Forum
	278-281 , 680-685 (1998)

B: Vanadium oxide (5/9) (16.8 %)*

D . V anadiani O xide (0,0) (10.0 %)	
Formula sum	O9 V5
Entry number	96-100-8516
Figure-of-Merit (FoM)	0.607013 [*]
Total number of peaks	497
Peaks in range	497
Peaks matched	142
Intensity scale factor	0.40*
Space group	P -1
Crystal system	triclinic (anorthic)
Unit cell	a= 7.0050 Å b= 8.3629 Å c= 10.9833 Å α= 91.980° β= 108.340 ° γ= 110.390 °
I/Ic	0.88
Calc. density	4.687 g/cm ³
Reference	Le Page Y, Bordet P, Marezio M, "Valence ordering in V~5~O~9~ below 120K", Journal of Solid State Chemistry 92, 380-385 (1991)

C:

Tris(dibromophosphazene) (1.9 %) Br6 N3 P3 Formula sum Entry number 96-100-8091 Figure-of-Merit (FoM) 0.607826* Total number of peaks 500 500 Peaks in range Peaks matched 136 Intensity scale factor 0.18 Space group Pnma orthorhombic Crystal system Unit cell a= 6.6300 Å b= 13.3600 Å c= 14.4300 Å I/Ic 3.55 Calc. density 3.192 g/cm³ Reference de Santis P, Giglio E, Ripamonti A, "The crystal structure of trimeric phosphonitrilic bromide.", Journal of Inorganic and Nuclear Chemistry 24, 469-474 (1962)

D: Thallium tungsten oxide

(2/4/13) (0.5 %)^{*} Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell I/Ic Calc. density Reference

500 106 0.15^{*} P m a b orthorhombic a= 7.3270 Å b= 37.8640 Å c= 3.8400 Å 10.10 8.430 g/cm³ Goreaud M, Labbe P H, Monier J C, Raveau B, "The thallium tungstate TI~2~ W~4~ O~13~ : A tunnel structure related to the hexagonal tungsten bronze", Journal of Solid State Chemistry **30**, 311-319 (1979)

E: Rubidium tecto-

phosphatodiniobate (7.2 %)^{*} Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell I/Ic Calc. density Reference Nb2 O8 P Rb 96-100-1623 0.619709^{*} 499 499 156 0.43^{*} P n m a orthorhombic a= 13.8150 Å b= 15.8840 Å c= 12.6750 Å 2.21 4.109 g/cm³ Leclaire A, Borel M M, Grandin A, Raveau B, "The phosphoniobate RbNb~2~PO~8~: An ordered sbstitution of PO~4~tetrahedra for NbO~6~ octahedra in the HTB structure", Journal of Solid State Chemistry **110**, 256-263 (1994)

O13 TI2 W4

96-100-1081

0.610767

500

Entry number	96-100-1018
Figure-of-Merit (FoM)	0.626444*
Total number of peaks	161
Peaks in range	161
Peaks matched	45
Intensity scale factor	0.56*
Space group	R -3 m
Crystal system	trigonal (hexagonal axes)
Unit cell	a= 7.4860 Å c= 43.1000 Å
l/lc	4.33
Meas. density	4.570 g/cm ³
Calc. density	4.608 g/cm ³
Reference	Michel C, Guyomarch A, Raveau B, "Nouveaux echangeurs cationiques avec une structure a tunnelsentrecroises: les oxides A~12~ M~33~ O~90~ et A~12~ M~33~ O~90~(H~2~ O)~12~", Journal of Solid State Chemistry 22 , 393-403 (1977)

G: Potassium tecto-

phosphatovanadate(III) * (19.3 %) K O24 P7 V4 Formula sum Entry number 96-100-1565 Figure-of-Merit (FoM) 0.666717* Total number of peaks 499 Peaks in range 499 Peaks matched 198 Intensity scale factor 0.55 Space group P -1 Crystal system triclinic (anorthic) Unit cell a= 10.0846 Å b= 10.2309 Å c= 10.8283 Å α= 112.757° β= 109.226 ° γ= 104.675 ° l/lc 1.05 Calc. density 3.202 g/cm³ Benhamada L, Grandin A, Borel M M, Leclaire A, Raveau B, "A vanadium(III) phosphate with V~2~O~10~ octahedral Reference units:KV~4~P~7~O~24~", Journal of Solid State Chemistry 104, 193-201 (1993)

H: Potassium iodate telluric

H6 I K O9 Te
96-100-8207
0.606531 [*]
499
499
99
0.25*
P c 21 n
orthorhombic
a= 14.2200 Å b= 6.6960 Å c= 8.6720 Å
4.76
3.520 g/cm ³
Averbuch-Pouchot M. T., "Crystal Chemistry of Some Addition Compounds of Alkali lodates withTelluric Acid", Journal of Solid State Chemistry 49 , 368-378 (1983)

I: Niobium thallium oxide hydrate

H3 Nb33 O90 TI10.5

96-100-1006

0.663422*

(33/10.5/88.5/1.5) (4.6 %)* Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell I/Ic Calc. density Reference

161 161 50 0.58^{*} R -3 m trigonal (hexagonal axes) a= 7.5100 Å c= 43.2900 Å 4.67 5.263 g/cm³ Gasperin M, "Synthese d'une nouvelle famille d'oxydes doubles: $A \sim 8 \sim ^{+} B \sim 22 \sim ^{5} + ^{\circ} O \sim 59 \sim$ structure du compose a thallium et niobium", Acta Crystallographica B (24,1968-38,1982) **33**, 398-402 (1977)

J: Iron(III) vanadium oxide

(6.5/11.5/35) (12.8 %)* Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell I/Ic Calc. density Reference Fe6.5 O35 V11.5 96-100-8122 0.610922^{*} 500 500 163 0.40^{*} P -1 triclinic (anorthic) a= 10.2090 Å b= 9.3870 Å c= 6.5640 Å α = 100.520° β = 94.350 ° γ = 98.850 ° 1.14 4.123 g/cm³ Grey I E, Anne M, Collomb A, Muller J, Marezio M, "The Crystal Structure of a New Mixed Oxide of Iron and Vanadium, (FeV)~18~ O~35~", Journal of Solid State Chemistry **37**, 219-227 (1981)

Fe4 H3 O15 P3
96-100-8554
0.617374 [*]
291
291
74
0.41*
C 1 2/c 1
monoclinic
a= 19.5800 Å b= 7.3880 Å c= 7.4510 Å β= 102.320 °
1.30
3.528 g/cm³
Malaman M, Ijjaali M, Venturini G, Gleitzer C, Soubeyroux J L, "Neutron diffraction study of Fe~4~(PO~4~)~3~(OH)~3~: occurrence offerromagnetic Fe~2~O~9~ clusters", European Journal of Solid State Inorganic Chemistry 28, 519-531 (1991)

L: Iron vanadium molybdenum

oxide (4/1.98/3.02/20) (4.7 %) Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell I/Ic Calc. density Reference

M: Dineodymium tetrabarium

dicopper oxide (1.3 %)*
Formula sum
Entry number
Figure-of-Merit (FoM)
Total number of peaks
Peaks in range
Peaks matched
Intensity scale factor
Space group
Crystal system
Unit cell
l/lc
Calc. density
Reference

N: Diantimony telluride

diselenide (0.7 %)* Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell I/Ic Meas. density Calc. density Reference

O: Chromium uranium(V)

oxide (2.6 %)^{*} Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell I/Ic Calc. density Reference Fe4 Mo3.02 O20 V1.98 96-100-0124 0.647073^{*} 462 462 100 0.37^{*} P 41 2 2 tetragonal a= 9.5390 Å c= 17.1411 Å 2.88 3.977 g/cm³ Laligant Y, Permer L, Le Bail A, "Crystal structure of Fe4 V2 Mo3 O20 determined from conventional X-raypowder diffraction data", European Journal of Solid State Inorganic Chemistry **32**, 325-334 (1995)

Ba4 Cu2 Nd2 O9 96-100-1570 0.620548^{*} 349 349 36 0.32^{*} P -4 n 2 tetragonal a= 12.0717 Å c= 3.8737 Å 8.81 6.523 g/cm³ Domenges B, Abbattista F, Michel C, Vallino M, Barbey L, Nguyen N, Raveau B, "A one-dimensional cuprate closely related to the "0212"-structure:Nd~2~Ba~4~Cu~2~O~9~", Journal of Solid State Chemistry **106**, 271-281 (1993)

Sb2 Se2 Te 96-100-8845 0.610288^{*} 151 151 16 0.27^{*} R 3 m trigonal (hexagonal axes) a= 4.1120 Å c= 29.4950 Å 13.25 6.100 g/cm³ 6.101 g/cm³ Andriamihaja A, Ibanez A, Jumas J C, Olivier-Fourcade J, Philippot E, "Evolution structurale de la solution solide Sb2 Te(3-x) Se(x) (O < X <2) dans le systeme Sb2 Te3 - Sb2 Se3", Revue de Chimie Minerale **22**, 357-368 (1985)

Cr O4 U 96-100-8068 0.612517^{*} 338 338 28 0.90^{*} P b c n orthorhombic a= 4.8710 Å b= 11.7870 Å c= 5.0530 Å 12.96 8.105 g/cm³ Bacmann M, Bertaut E F, "Structure de U Cr O~4~", Bulletin de la Societe Francaise de Mineralogie et de Cristallographie(72,1949-100,1977) **87**, 275-276 (1964) I (1.9 %) Formula sum Cs O4 P Zn Entry number 96-100-7239 Figure-of-Merit (FoM) 0.615465 Total number of peaks 497 497 Peaks in range 57 Peaks matched Intensity scale factor 0.27 Space group Pnma orthorhombic Crystal system a= 9.1940 Å b= 5.4900 Å c= 9.3880 Å Unit cell l/lc 5.09 Calc. density 4.110 g/cm³ Reference Blum D, Durif A, Averbuch-Pouchot M T, "Crystal structures of the three forms of Cs Zn P O4", Ferroelectrics 69, 283-292 (1986)

Q: Cadmium arsenide iodide

As3 Cd2 I

0.600122

286

286

0.21

C1c1

B6 Ba

26 26

7

0.28

cubic

9.67

P m -3 m

a= 4.2680 Å

4.318 g/cm3

96-100-9053

0.600998

74

96-100-1838

(2/3/1) (1.2 %) Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell l/lc Calc. density Reference

monoclinic a= 8.4360 Å b= 9.5940 Å c= 7.9520 Å β= 100.650 ° 6.49 6.053 g/cm³ Rebbah A, Leclaire A, Yazbeck J, Deschanvres A, "Structure de l'iodure de cadmium et d'arsenic Cd2 As3 I", Acta Crystallographica B (24,1968-38,1982) 35, 2197-2199 (1979)

Bertaut F, Blum P, "Etude de hexaborures et de la substition alcaline", Comptes Rendus Hebdomadaires des Seances de

R: Barium boride (1/6) (1.1 %)* Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell I/Ic Calc. density Reference

S: Antimony selenide

Unit cell

l/lc

iodide (1.8 %)* I Sb Se Formula sum 96-100-8205 Entry number Figure-of-Merit (FoM) 0.658651 Total number of peaks 494 Peaks in range 494 Peaks matched 39 Intensity scale factor 0.37* Space group Pnma Crystal system orthorhombic a= 8.6980 Å b= 4.1270 Å c= 10.4120 Å 7.57 5.822 g/cm3 Calc. density Ibanez A, Jumas J C, Olivier-Fourcade J, Philippot E, Maurin M, "Sur les Chalcogeno-iodures d'antimoine SbXI Reference (X=S,Se,Te):Structures etspectroscopie Moessbauer de ^121^Sb", Journal of Solid State Chemistry 48, 272-283 (1983)

l'Academie des Sciences(1884 - 1965) 234, 2621-2623 (1952)

T: Ammonium trio-triiodide (2.4 %)

H4 I3 N Formula sum 96-101-0244 Entry number Figure-of-Merit (FoM) 0.600372* Total number of peaks 499 Peaks in range 499 Peaks matched 68 Intensity scale factor 0.36 Space group Pmcn Crystal system orthorhombic Unit cell a= 6.6400 Å b= 9.6600 Å c= 10.8200 Å l/lc 5.53 Meas. density 3.750 g/cm³ 3.777 g/cm³ Calc. density Reference Mooney R C L, "The Configuration of the Triiodide Group in Ammonium Triiodide Crystals.", Zeitschrift fuer Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie (-144, 1977) 90, 143-150 (1935)

(*)2theta values have been shifted internally for the calculation of the amounts, the intensity scaling factors as well as the figure-of-merit (FoM), due to the active search-match option 'Automatic zero point adaption'.

Search-Match

Settings	
Reference database used	COD-Inorg 2023.06.06
Automatic zeropoint adaptation	Yes
Downgrade entries with low scaling factors	sYes
Minimum figure-of-merit (FoM)	0.60
2theta window for peak corr.	0.30 deg.
Minimum rel. int. for peak corr.	0
Parameter/influence 2theta	0.50
Parameter/influence intensities	0.50
Parameter multiple/single phase(s)	0.50

Peak List

No.	2theta [°]	d [Å]	I/I0 (peak height)	Counts (peak area)	FWHM	Matched
1	18.06	4.9079	19.65	13.70	0.1200	B,C,E,G,H,L,N,T
2	20.86	4.2550	215.25	200.11	0.1600	C,E,G,H,L,M,P,R
3	23.08	3.8505	23.80	22.13	0.1600	B,C,D,E,G,H,J,L,M,O,S,T
4	24.90	3.5730	19.77	22.98	0.2000	B,C,D,E,F,G,H,I,N,Q,T
5	26.66	3.3410	1000.00	929.64	0.1600	B,C,D,E,F,G,H,I,J,K,L,M,O,P,S,T
6	27.08	3.2901	28.38	46.17	0.2800	B,C,D,E,G,H,K,L,N,P
7	28.04	3.1796	224.15	104.19	0.0800	B,C,D,E,F,G,H,J,K,L,N,T
8	28.42	3.1380	14.37	10.02	0.1200	C,D,E,G,I,J,K,L,M,Q
9	29.42	3.0335	232.72	270.43	0.2000	A,B,C,E,F,G,H,I,J,K,L,M,N,O,Q,R,S,T
10	30.96	2.8861	32.61	37.90	0.2000	B,C,D,E,F,G,H,I,J,K,L,M,P,S,T
11	32.14	2.7828	14.00	16.27	0.2000	B,D,E,F,G,I,J,K,L,M,Q,S,T
12	32.78	2.7299	29.84	55.47	0.3200	B,C,E,G,H,J,L,M,N,P,Q,S,T
13	33.84	2.6467	13.77	6.40	0.0800	A,C,D,E,G,H,J,K,L,Q,S,T
14	34.12	2.6257	14.50	10.11	0.1200	B,C,D,E,G,H,K,L,O,P,Q,T
15	35.98	2.4941	24.44	28.40	0.2000	A,B,C,D,E,F,G,H,I,J,S,T
16	36.58	2.4545	149.19	104.02	0.1200	B,C,D,E,F,G,H,I,J,K,L,N,O,Q,R,T
17	39.48	2.2807	78.66	109.69	0.2400	B,C,D,E,F,G,H,I,J,K,L,M,N,P,Q,S
18	40.32	2.2351	19.96	13.92	0.1200	B,C,D,E,F,G,H,I,J,K,L,M,O,P,S,T
19	42.46	2.1272	54.17	50.35	0.1600	B,C,D,E,F,G,H,I,J,L,M,O,P,R,S,T
20	43.18	2.0934	27.21	31.62	0.2000	A,B,C,D,E,G,H,I,J,K,L,O,P,Q,T
21	43.96	2.0581	15.82	11.03	0.1200	B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,S,T
22	45.82	1.9788	42.51	19.76	0.0800	B,C,D,E,F,G,H,I,J,K,L,M,Q,S,T
23	47.52	1.9119	32.02	52.10	0.2800	B,C,D,E,F,G,H,J,K,L,M,N,O,Q,R,S,T
24	48.52	1.8748	36.31	59.07	0.2800	A,B,C,D,E,F,G,I,J,K,L,M,O,P,Q,S
25	50.16	1.8172	88.94	62.01	0.1200	A,B,C,D,E,F,G,H,I,J,K,L,M,N,Q,S,T
26	54.88	1.6716	24.06	11.18	0.0800	A,B,C,D,E,F,G,H,I,J,K,L,M,P,Q,S
27	55.34	1.6588	11.41	7.96	0.1200	B,C,D,E,F,G,H,I,J,K,L,M,P,Q,S,T
28	57.42	1.6035	15.63	18.16	0.2000/	A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,S,T
29	59.96	1.5415	59.31	41.35	0.1200	B,C,D,E,G,H,I,J,K,L,M,O,P,Q,S,T
30	67.76	1.3818	40.14	27.99	0.1200	B,C,D,F,H,I,J,K,L,M,P,Q,S,T
31	67.94	1.3786	18.97	17.63	0.1600	C,H,I,J,K,L,P,Q
32	68.16	1.3747	36.31	33.76	0.1600	B,C,H,J,K,L,O,P,S
33	68.32	1.3718	31.19	28.99	0.1600	B,C,D,F,H,I,J,K,L,M,O,P,S,T
34	73.50	1.2874	9.11	2.12	0.0400	A,C,D,F,H,I,K,L,M,O,P,Q,R,S,T
35	75.66	1.2559	22.01	10.23	0.0800	C,D,H,I,K,L,M,N,O,P,Q,T
36	80.08	1.1974	24.35	11.32	0.0800	A,C,D,H,L,O,P,Q,S,T
37	81.18	1.1839	19.70	13.73	0.1200	A,C,D,H,L,M,N,P,Q,R,S,T
38	81.46	1.1805	24.83	23.08	0.1600	C,D,H,L,M,N,O,P,Q,S,T
39	83.84	1.1530	21.71	20.18	0.1600	C,D,H,L,M,N,Q,S,T
40	84.06	1.1505	9.00	4.18	0.0800	C,D,H,L,M,O,P,Q,S,T

Integrated Profile Areas

Based on calculated profile

Profile area	Counts	Amount
Overall diffraction profile	654438	100.00%
Background radiation	459300	70.18%
Diffraction peaks	195138	29.82%
Peak area belonging to selected phases	191615	29.28%
Peak area of phase A (Yttrium oxide)	1956	0.30%
Peak area of phase B (Vanadium oxide (5/9))	12278	1.88%
Peak area of phase C (Tris(dibromophosphazene))	9040	1.38%
Peak area of phase D (Thallium tungsten oxide (2/4/13))	4210	0.64%
Peak area of phase E (Rubidium tecto-phosphatodiniobate)	14223	2.17%
Peak area of phase F (Rubidium niobium tungsten oxide (12/30/3/90))	14431	2.21%
Peak area of phase G (Potassium tecto-phosphatovanadate(III) *)	18760	2.87%
Peak area of phase H (Potassium iodate telluric acid)	5938	0.91%
Peak area of phase I (Niobium thallium oxide hydrate (33/10.5/88.5/1.5))	12978	1.98%
Peak area of phase J (Iron(III) vanadium oxide (6.5/11.5/35))	14780	2.26%
Peak area of phase K (Iron(III) tris(phosphate) trihydroxide)	16454	2.51%
Peak area of phase L (Iron vanadium molybdenum oxide (4/1.98/3.02/20))	9866	1.51%
Peak area of phase M (Dineodymium tetrabarium dicopper oxide)	4329	0.66%
Peak area of phase N (Diantimony telluride diselenide)	3058	0.47%
Peak area of phase O (Chromium uranium(V) oxide)	12030	1.84%
Peak area of phase P (Caesium zinc phosphate(V) - I)	6832	1.04%
Peak area of phase Q (Cadmium arsenide iodide (2/3/1))	4634	0.71%
Peak area of phase R (Barium boride (1/6))	6774	1.04%
Peak area of phase S (Antimony selenide iodide)	6946	1.06%
Peak area of phase T (Ammonium trio-triiodide)	12097	1.85%
Unidentified peak area	3524	0.54%

Peak Residuals

Peak data	Counts	Amount
Overall peak intensity	2559	100.00%
Peak intensity belonging to selected phases	2559	99.97%
Unidentified peak intensity	1	0.03%

Diffraction Pattern Graphics

Amounts of Phases and Elements (Weight %)

Phase composition:

Potassium tecto-phosphatovanadate[III) * [19.3%], Vanadium oxide (5/9) (16.8%), Iron(III) vanadium oxide (6.5/11.5/35) (12.8%), Iron(III) tris[phosphate) trihydroxide (11.5%), Rubidium tecto-phosphatodiniobate (7.2%), Rubidium niobium tungsten oxide (12/30/3/90) (4.8%), Iron vanadium molybdenum oxide (4/1.98/3.02/20) (4.7%), Niobium thallium oxide hydrate (33/10.5/83.5/1.5) (4.6%), Chromium uranium(V) oxide (2.6%), Ammonium trio-triiodide (2.4%), Caesium zinc phosphate(V) - I (1.9%), Potassium iodate telluric acid (1.9%), Tris(dibromophosphazene) (1.9%), Antimony selenide iodide (1.8%), Dineodymium tetrabanum dicopper oxide (1.3%), Cadmium arsenide iodide (2/3/1) (1.2%), Barium boride (1/6) (1.1%), Yttrium oxide (1.0%). Diantimony telluride diselenide (0.7%), Thallium tungsten oxide (2/4/13) (0.5%)

Elemental composition:

O (32,47%), V (20,91%), Fe (8,83%), P (7,89%), Nb (7,49%), I (3,79%), Rb (2,27%), U (1,72%), TI (1,64%), Mo (1,47%), Br (1,45%), Ba (1,37%), K (1,06%), Sb (1,00%), Cs (0,88%), W (0,75%), Y (0,75%), Te (0,73%), Se (0,65%), Cd (0,46%), As (0,46%), Zn (0,43%), Cr (0,38%), Nd (0,34%), B (0,34%), N (0,21%), Cu (0,15%), H (0,11%) (LE: 33,14%)

Match! Phase Analysis Report

Sample: Sample_3

Sample Data

File name File path

Data collected Data range Original data range Number of points Step size Rietveld refinement converged Alpha2 subtracted Background subtr. Data smoothed 2theta correction Radiation Wavelength

Sample#3.raw G:/.shortcut-targets-by-id/16KIMvpSIqVAUHFFggq9IVgYQzQybBTlu/Marwan - research/Concrete Mix Master Thesis/X-Ray/Birzeit University_XRD_Raw data Jul 13, 2023 13:02:42 4.880° - 89.880° 5.000° - 90.000° 4251 0.020 No No No No -0.12° X-rays 1.540598 Å

Analysis Results

Phase composition (Weight %)

Elemental composition (Weight %)

Index	IndexAmountName Formula sum		Element Amount (weigh		
	(%)			0	25.0%(*)
А	1.2	Titanium hexaniobium dithallium oxide	Nb6 O18 Ti Tl2	Ba	10.3%
		Thallium niobium uranium oxide (1/2/2/11.5)	Nb2 O11.5 TI U2	F	10.0%(*)
С	8.4	Sodium strontium iron(III) hexafluoride	F6 Fe Na Sr	Р	9.6%
D	5.6	Sodium dirubidium tecto-hexaniobotriphosphate(V)	Na Nb6 O24 P3 Rb2	Nb	7.3%
E	3.8	Rubidium niobium tungsten oxide (12/30/3/90)	Nb30 O90 Rb12 W3	Fe	5.2%
F	17.4	Potassium tecto-phosphatovanadate(III) *	K O24 P7 V4	V	5.1%
G	1.0	Potassium phosphorus tungsten oxide (.4/2/4/16)	K0.4 O16 P2 W4	Ca	4.9%
Н	3.9	Niobium thallium oxide hydrate (33/10.5/88.5/1.5)	H3 Nb33 O90 TI10.5	Мо	4.0%
1	7.9	Iron vanadium molybdenum oxide (4/1.98/3.02/20)	Fe4 Mo3.02 O20 V1.98	Ni	3.3%
J	4.8	Heptabarium copper hexairon(III) fluoride	Ba7 Cu F34 Fe6	Sr	2.6%
K	4.9	Heptabarium bis(16-fluorotriferrate(III)) dihydrate	Ba7 F32 Fe6 H4 O2	TI	2.3%
L	0.9	Dineodymium tetrabarium dicopper oxide	Ba4 Cu2 Nd2 O9	Cs	1.5%
Μ	8.2	Dibarium octafluorotriniccolate decafluorotetraniccola	teBa2 F18 Ni7		
N	1.0	DICADMIUM TRIARSENIDE BROMIDE	As3 Br Cd2	Rb	1.5%
0	15.4	Calcium diphosphate - \b	Ca2 O7 P2		
Р	4.8	Caesium oxomolybdenum(V) diphosphate	Cs Mo O8 P2	W	1.0%
Q	0.4	Cadmium lead(IV) oxide - I	Cd O3 Pb	K	0.8%
R	0.5	Bismuth lead barium lanthanum copper oxide	Ba Bi Cu La O6 Pb	Na	0.8%
S	1.3	Barium molybdenum phosphate (1/2/3)	Ba Mo2 O12 P3	Cd	
Т	5.3	Barium gallium fluoride hydroxide hydrate (7/6/16/16/	2)Ba7 F16 Ga6 H20 O18	As	0.4%
	0.6	Unidentified peak area	·	Pb	0.3%
				Cu	0.3%
Amou	nts calc	ulated by RIR (Reference Intensity Ratio) method		Nd	0.2%
				Br	0.2%
				Bi	0.1%
				La	0.1%
				Ti	0.0%
				*LE (sum)	35.1%

Details of identified phases

A: Titanium hexaniobium dithallium oxide (1.2 %)

Formula sum Nb6 O18 Ti Tl2 Entry number 96-100-1851 Figure-of-Merit (FoM) 0.601188 Total number of peaks 221 221 Peaks in range Peaks matched 26 Intensity scale factor 0.20 Space group P -3 m 1 trigonal (hexagonal axes) Crystal system Unit cell a= 7.5370 Å c= 8.2240 Å l/lc 5.49 5.420 g/cm³ Meas. density 5.344 g/cm³ Calc. density Desgardin G, Robert C, Raveau B, "Etude de comportement du thallium dans de nouvelles structures atunnels entrecroises: TI2 Reference Nb6 Ti O18 et Tl2 Ta6 Ti O18", Materials Research Bulletin 13, 621-626 (1978)

B: Thallium niobium uranium

oxide (1/2/2/11.5) (3.3 %)* Formula sum Nb2 O11.5 TI U2 Entry number 96-100-1356 Figure-of-Merit (FoM) 0.630699 Total number of peaks 497 Peaks in range 497 Peaks matched 132 Intensity scale factor 0.46 Space group Pmnb Crystal system orthorhombic a= 7.7130 Å b= 10.3290 Å c= 13.9470 Å Unit cell 4.52 I/Ic Calc. density 6.278 g/cm3 Reference Gasperin M, "Synthese et structure de trois niobouranates d'ions monovalents: TINb~2~ U~2~ O~11.5~, K Nb U O~6~, et Rb Nb U O~6~", Journal of Solid State Chemistry 67, 219-224 (1987)

C: Sodium strontium iron(III)

hexafluoride (8.4 %)	
Formula sum	F6 Fe Na Sr
Entry number	96-100-0307
Figure-of-Merit (FoM)	0.608816*
Total number of peaks	499
Peaks in range	499
Peaks matched	79
Intensity scale factor	0.39*
Space group	P 21 21 21
Crystal system	orthorhombic
Unit cell	a= 5.4053 Å b= 9.3103 Å c= 10.3823 Å
l/lc	1.51
Calc. density	3.565 g/cm³
Reference	Hemon A., Courbion G., "Synthesis and crystal structures of \b-NaSrCrF~6~ and NaSrFeF~6~. Structural correlations with
	A~2~MF~6~ compounds". European Journal of Solid State and Inorganic Chemistry 29 , 519-531 (1992)

D: Sodium dirubidium tecto-

hexaniobotriphosphate(V) (5.6 %)	
Formula sum	Na Nb6 O24 P3 Rb2
Entry number	96-100-1863
Figure-of-Merit (FoM)	0.658809*
Total number of peaks	152
Peaks in range	152
Peaks matched	52
Intensity scale factor	0.76*
Space group	R 32
Crystal system	trigonal (hexagonal axes)
Unit cell	a= 13.3518 Å c= 10.3415 Å
l/lc	4.43
Calc. density	3.831 g/cm ³
Reference	Costentin G, Borel M M, Grandin A, Leclaire A, Raveau B, "A large family of niobium phosphates with the Ca0.5 Cs2 Nb6 P3 O24structure", Materials Research Bulletin 26 , 301-307 (1991)

E: Rubidium niobium tungsten

oxide (12/30/3/90) (3.8 %) Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell I/Ic Meas. density Calc. density Reference Nb30 O90 Rb12 W3 96-100-1018 0.655006^{*} 161 161 57 0.51^{*} R -3 m trigonal (hexagonal axes) a = 7.4860 Å c= 43.1000 Å 4.33 4.570 g/cm³ 4.608 g/cm³ Michel C, Guyomarch A, Raveau B, "Nouveaux echangeurs cationiques avec une structure a tunnelsentrecroises: les oxides A~12~ M~33~ O~90~ et A~12~ M~33~ O~90~(H~2~ O)~12~", Journal of Solid State Chemistry **22**, 393-403 (1977)

F: Potassium tectophosphatovanadate(III) * (17.4 %)^{*}

Formula sum	K O24 P7 V4
Entry number	96-100-1565
Figure-of-Merit (FoM)	0.667020 [*]
Total number of peaks	499
Peaks in range	499
Peaks matched	231
Intensity scale factor	0.56 [*]
Space group	P -1
Crystal system	triclinic (anorthic)
Unit cell	a= 10.0846 Å b= 10.2309 Å c= 10.8283 Å α= 112.757° β= 109.226 ° γ= 104.675 °
l/lc	1.05
Calc. density	3.202 g/cm³
Reference	Benhamada L, Grandin A, Borel M M, Leclaire A, Raveau B, "A vanadium(III) phosphate with V~2~O~10~ octahedral units:KV~4~P~7~O~24~", Journal of Solid State Chemistry 104 , 193-201 (1993)

G: Potassium phosphorus (A A A/)*

tungsten oxide (.4/2/4/16) (1.0 %)	
Formula sum	K0.4 O16 P2 W4
Entry number	96-100-1234
Figure-of-Merit (FoM)	0.616789*
Total number of peaks	497
Peaks in range	497
Peaks matched	75
Intensity scale factor	0.30*
Space group	P 1 21/m 1
Crystal system	monoclinic
Unit cell	a= 6.6702 Å b= 5.3228 Å c= 8.9091 Å β= 100.546 °
l/lc	9.94
Calc. density	5.712 g/cm³
Reference	Giroult J P, Goreaud M, Labbe P, Raveau B, "K~x~ P~2~ W~2~ O~16~: A Bronze with a Tunnel Structure Built up from PO~4~
	Tetrahedra and W O~6~ Octahedra", Journal of Solid State Chemistry 44 , 407-414 (1982)

H: Niobium thallium oxide hydrate

(33/10.5/88.5/1.5) (3.9 %)*	
Formula sum	H3 Nb33 O90 TI10.5
Entry number	96-100-1006
Figure-of-Merit (FoM)	0.677304 [*]
Total number of peaks	161
Peaks in range	161
Peaks matched	63
Intensity scale factor	0.56*
Space group	R -3 m
Crystal system	trigonal (hexagonal axes)
Unit cell	a= 7.5100 Å c= 43.2900 Å
l/lc	4.67
Calc. density	5.263 g/cm³
Reference	Gasperin M, "Synthese d'une nouvelle famille d'oxydes doubles: A~8~^+^ B~22~^5+^O~59~ structure du compose a thallium et niobium", Acta Crystallographica B (24.1968-38.1982) 33 , 398-402 (1977)

I: Iron vanadium molybdenum

oxide (4/1.98/3.02/20) (7.9 %)* Fe4 Mo3.02 O20 V1.98 Formula sum Entry number 96-100-0124 Figure-of-Merit (FoM) 0.693760* Total number of peaks 462 Peaks in range 462 Peaks matched 114 Intensity scale factor 0.70 Space group P 41 2 2 Crystal system tetragonal a= 9.5390 Å c= 17.1411 Å 2.88 Calc. density 3.977 g/cm3 Laligant Y, Permer L, Le Bail A, "Crystal structure of Fe4 V2 Mo3 O20 determined from conventional X-raypowder diffraction data", European Journal of Solid State Inorganic Chemistry 32, 325-334 (1995)

J: Heptabarium copper

Unit cell l/lc

Reference

hexairon(III) fluoride (4.8 %)* Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell l/lc Calc. density Reference

Ba7 Cu F34 Fe6 96-100-0279 0.600232 301 301 105 0.28 C 1 2/m 1 monoclinic a= 16.8920 Å b= 11.3310 Å c= 7.6460 Å β= 101.750 ° 1.95 4.649 g/cm³ Renaudin J, Ferey G, Drillon M, De Kozak A, Samouel M, "La structure magnetique du ferrimagnetique monodimensionnel Ba~7~ CuFe~6~ F~34~ de type jarlite", Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences, Serie C, Sciences Chimiques (1966-) 308, 1217-1222 (1989)

K: Heptabarium bis(16fluorotriferrate(III)) dihydrate (4.9 %)

Formula sum	Ba7 F32 Fe6 H4 O2
Entry number	96-100-0376
Figure-of-Merit (FoM)	0.600528*
Total number of peaks	296
Peaks in range	296
Peaks matched	111
Intensity scale factor	0.29*
Space group	C 1 2/m 1
Crystal system	monoclinic
Unit cell	a= 17.0230 Å b= 11.4820 Å c= 7.6240 Å β= 101.130 °
l/lc	1.94
Calc. density	4.398 g/cm ³
Reference	Crosnier-Lopez M P, Calage Y, Duroy H, Fourquet J L, "Ba7 Fe6 F32 . 2(H2 O): original isolated trimers (Fe3 F16)(7-) in a newdefective jarlite-type compound", Zeitschrift fuer Anorganische und Allgemeine Chemie 621, 1025-1032 (1995)

L: Dineodymium tetrabarium dicopper oxide (0.9 %)*

Formula sum	Ba4 Cu2 Nd2 O9
Entry number	96-100-1570
Figure-of-Merit (FoM)	0.633237*
Total number of peaks	349
Peaks in range	349
Peaks matched	39
Intensity scale factor	0.25*
Space group	P -4 n 2
Crystal system	tetragonal
Unit cell	a= 12.0717 Å c= 3.8737 Å
l/lc	8.81
Calc. density	6.523 g/cm ³
Reference	Domenges B, Abbattista F, Michel C, Vallino M, Barbey L, Nguyen N, Raveau B, "A one-dimensional cuprate closely related to the "0212"-structure:Nd~2~Ba~4~Cu~2~O~9~", Journal of Solid State Chemistry 106 , 271-281 (1993)

M: Dibarium octafluorotriniccolate

decafluorotetraniccolate (8.2 %)	
Formula sum	Ba2 F18 Ni7
Entry number	96-100-0250
Figure-of-Merit (FoM)	0.621667 [*]
Total number of peaks	500
Peaks in range	500
Peaks matched	154
Intensity scale factor	0.42*
Space group	P-1
Crystal system	triclinic (anorthic)
Unit cell	a= 6.9240 Å b= 7.2180 Å c= 7.4370 Å α= 94.390° β= 93.200 ° γ= 115.820 °
I/Ic	1.67
Calc. density	5.139 g/cm³
Reference	Renaudin J, Ferey G, Kozak A, Samouel M, Lacorre P, "Crystal and magnetic structures of the ferrimagnet Ba~2~ Ni~7~ F~18~", Solid State Communications 65 , 185-188 (1988)

N: DICADMIUM TRIARSENIDE

BROMIDE (1.0 %) [*]
Formula sum
Entry number
Figure-of-Merit (FoM)
Total number of peaks
Peaks in range
Peaks matched
Intensity scale factor
Space group
Crystal system
Unit cell
l/lc
Calc. density
Reference

284 284 64 0.17^{*} C 1 c 1 monoclinic a= 8.2860 Å b= 9.4080 Å c= 7.9870 Å β = 101.300 ° 5.61 5.760 g/cm³ Rebbah A, Yazbeck J, Lande R, Deschanvres A, "Etudes structurales et optiques des phases du type Cd~2~ A~3~ X (A =As, P", Materials Research Bulletin 16, 525-533 (1981)

O: Calcium diphosphate -

\b (15.4 %)^{*} Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell l/lc Calc. density Reference

Ca2 O7 P2 96-100-1557 0.606278 328 328 86 0.35 P 41 tetragonal a= 6.6858 Å c= 24.1470 Å 0.74 3.127 g/cm³ Boudin S., Grandin A., Borel M. M., Leclaire A., Raveau B., "Redetermination of the \b-Ca~2~P~2~O~7~ structure", Acta Crystallographica, Section C: Crystal Structure Communications 49(12), 2062-2064 (1993)

P: Caesium oxomolybdenum(V) diphosphate (4.8 %)*

Formula sum Entry number

Cs Mo O8 P2 96-100-1619

As3 Br Cd2 96-100-1295 0.601675

Figure-of-Merit (FoM)	0.605866*
Total number of peaks	498
Peaks in range	498
Peaks matched	156
Intensity scale factor	0.26*
Space group	P 1 21/n 1
Crystal system	monoclinic
Unit cell	a= 5.1340 Å b= 11.7070 Å c= 12.0630 Å β= 91.770 °
l/lc	1.74
Meas. density	3.900 g/cm³
Calc. density	3.838 g/cm ³
Reference	Guesdon A, Borel M M, Leclaire A, Grandin A, Raveau B, "A molybdenum (V) diphosphate closely related to the \$-alpha- NaTiP~2~O~7~ structure: Cs(MoO)P~2~O~7~", Journal of Solid State Chemistry 108 , 46-50 (1994)

Q: Cadmium lead(IV) oxide -

l (0.4 %) [*]	
Formula sum	Cd O3 Pb
Entry number	96-100-1049
Figure-of-Merit (FoM)	0.620778 [*]
Total number of peaks	80
Peaks in range	80
Peaks matched	18
Intensity scale factor	0.21*
Space group	la-3
Crystal system	cubic
Unit cell	a= 10.4530 Å
l/lc	17.91
Calc. density	8.551 g/cm³
Reference	Levy-Clement C, Michel A, "Sur un oxyde double Cd Pb O~3~ de type c des oxydes de lanthanides", Annales de Chimie (Paris) (Vol=Year) 1972 , 275-281 (1972)

R: Bismuth lead barium lanthanum

copper oxide (0.5 %) [*]	
Entry number	
Entry number Figure of Marit (FoM)	
Figure-oi-ment (Fow)	0.609712
Total number of peaks	498
Peaks in range	498
Peaks matched	72
Intensity scale factor	0.19*
Space group	Pnan
Crystal system	orthorhombic
Unit cell	a= 5.4071 Å b= 5.4895 Å c= 24.5490 Å
l/lc	11.56
Calc. density	7.766 g/cm ³
Reference	Michel C, Pelloquin D, Hervieu M, Raveau B, Bouree F, "Neutron diffraction study of the modulation free 2201-type structure:BiPbBaLaCuO~6~", European Journal of Solid State Inorganic Chemistry 30 , 991-996 (1993)

S: Barium molybdenum phosphate

(1/2/3) (1.3 %) [*]	
Formula sum	Ba Mo2 O12 P3
Entry number	96-100-1430
Figure-of-Merit (FoM)	0.604403 [*]
Total number of peaks	126
Peaks in range	126
Peaks matched	39
Intensity scale factor	0.20*
Space group	R-3 c
Crystal system	trigonal (hexagonal axes)
Unit cell	a= 8.3990 Å c= 23.8950 Å
l/lc	5.00
Calc. density	4.191 g/cm ³
Reference	Leclaire A, Borel M M, Grandin A, Raveau B, "A novel family of mixed valence molybdenum phosphates with a Nasiconstructure,
	AMo~2~P~3~O~12~ (A= Ca, Sr, Ba)", European Journal of Solid State Inorganic Chemistry 26 , 45-51 (1989)

T: Barium gallium fluoride hydroxide hydrate

hydroxide hydrate	
(7/6/16/16/2) (5.3 %)*	
Formula sum	Ba7 F16 Ga6 H20 O18
Entry number	96-100-0400
Figure-of-Merit (FoM)	0.617431 [*]
Total number of peaks	300
Peaks in range	300
Peaks matched	100
Intensity scale factor	0.35 [*]
Space group	C 1 2/m 1
Crystal system	monoclinic
Unit cell	a= 16.9080 Å b= 11.4060 Å c= 7.5420 Å β= 101.280 °
l/lc	2.15
Calc. density	4.590 g/cm ³
Reference	Hemon-Ribaud A, Crosnier-Lopez M P, Fourquet J L, Courbion G, "On new fluorides with the jarlite-type structure: crystal structures ofNa2 Sr7 Al6 F34, Na2 Sr6 Zn Fe6 F34 and Ba7 Ga6 (F, OH)32 . 2H2O", Journal of Fluorine Chemistry 68 , 155-163 (1994)

(*) 2theta values have been shifted internally for the calculation of the amounts, the intensity scaling factors as well as the figure-of-merit (FoM), due to the active search-match option 'Automatic zero point adaption'.

Search-Match

SettingsReference database usedCOD-Inorg 2023.06.06Automatic zeropoint adaptationYesDowngrade entries with low scaling factors YesMinimum figure-of-merit (FoM)0.602theta window for peak corr.0.30 deg.Minimum rel. int. for peak corr.0Parameter/influence 2theta0.50Parameter multiple/single phase(s)0.50

Peak List

No.	2theta [°]	d [Å]	I/I0 (peak height)	Counts (peak area)	FWHM	Matched
1	10.38	8.5155	7.47	4.35	0.0800	F,G,L
2	10.66	8.2924	7.22	4.20	0.0800	A,B,I,J,K,P,T
3	11.02	8.0223	9.54	19.44	0.2800	F
4	18.02	4.9187	54.94	47.97	0.1200	B,F,G,I,J,M,T
5	20.84	4.2590	312.94	273.27	0.1200	B,C,F,I,K,L,P,Q,S
6	22.98	3.8670	13.36	23.34	0.2400	B,D,F,G,I,J,K,N,O,P,R,T
7	24.00	3.7049	8.56	4.98	0.0800	B,C,E,F,I,J,K,L,M,O,P,Q,R,S,T
8	24.88	3.5758	10.16	20.70	0.2800	E,F,G,H,I,K,M,N,T
9	25.68	3.4662	8.52	2.48	0.0400	A,B,C,D,M,O,R,S
10	26.64	3.3435	1000.00	873.22	0.1200	B,C,D,E,F,G,H,I,J,K,L,M,O,P,T
11	27.40	3.2524	12.34	75.42	0.8400	A,C,E,F,G,H,I,J,K,M,O,P,R,T
12	28.68	3.1101	13.05	22.80	0.2400	B,E,F,H,I,J,K,M,N,O,P,S,T
13	29.40	3.0356	146.91	213.81	0.2000	A,B,D,E,F,H,I,K,L,M,N,O,P,Q,R,T
14	29.98	2.9781	9.30	21.65	0.3200	C,E,H,I,J,M,O,P,R
15	30.90	2.8915	61.64	107.65	0.2400	B,C,F,G,H,I,J,K,O,P,S,T
16	31.30	2.8555	10.68	3.11	0.0400	B,E,F,G,I,J,K,L,M,P,T
17	32.12	2.7844	11.78	17.14	0.2000	A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T
18	32.70	2.7364	19.56	51.25	0.3600	A,D,F,I,J,K,L,N,O,P,R,S,T
19	34.08	2.6287	28.19	41.03	0.2000	B,C,F,I,J,N,P,Q,R
20	36.50	2.4597	55.77	48.70	0.1200	A,B,C,E,F,G,H,I,J,K,M,P,Q,R,T
21	39.46	2.2818	63.59	55.53	0.1200	B,C,E,F,G,H,I,J,K,L,M,N,O,P,R,S,T
22	40.28	2.2372	39.68	34.65	0.1200	B,D,E,F,H,I,J,K,L,M,N,O,P,Q,R,S,T
23	42.42	2.1291	75.40	65.84	0.1200	A,B,C,D,E,F,G,H,I,J,K,L,M,O,P,Q,R,S,T
24	43.16	2.0943	16.02	27.99	0.2400	A,B,C,F,G,H,I,J,K,M,O,P,R,S,T
25	43.94	2.0590	7.64	15.57	0.2800	A,B,E,F,G,H,I,J,K,L,M,N,P,Q,R,S,T
26	45.78	1.9804	28.37	24.77	0.1200	B,C,E,F,G,H,I,J,K,L,O,P,S,T
27	47.12	1.9271	22.38	39.09	0.2400	A,B,C,D,F,G,H,K,L,M,N,O,P,R,T
28	47.44	1.9149	17.22	60.16	0.4800	B,E,F,I,J,K,L,M,N,P,Q,R,S,T
29	48.50	1.8755	20.11	23.41	0.1600	A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,R,T
30	49.14	1.8526	10.97	12.77	0.1600	B,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,S,T
31	50.12	1.8186	60.72	70.69	0.1600	A,B,C,E,F,G,H,I,J,K,L,M,N,P,R,T
32	50.76	1.7972	10.21	5.94	0.0800	A,B,E,F,H,I,J,K,L,M,N,O,P,R,S,T
33	51.02	1.7886	7.29	4.24	0.0800	B,C,D,E,F,G,H,J,K,M,N,O,P,Q,R,T
34	54.84	1.6727	43.24	25.17	0.0800	B,C,E,F,G,H,I,J,K,L,M,N,O,P,R,S,T
35	55.00	1.6682	20.66	18.04	0.1200	B,C,D,E,F,G,H,I,J,K,M,N,O,P,R,S,T
36	57.36	1.6051	6.91	6.03	0.1200	A,B,C,E,F,G,H,I,J,K,L,M,N,O,P,S,T
37	59.92	1.5425	31.62	27.61	0.1200	B,C,D,F,G,I,J,L,M,N,O,P,Q,R,S,T
38	60.10	1.5383	14.36	12.54	0.1200	B,C,D,F,H,I,J,K,L,M,N,O,P,R,S,T
39	64.02	1.4532	7.65	4.46	0.0800	B,C,D,E,G,H,I,J,K,M,N,O,P,Q,R,S,T
40	67.72	1.3825	56.83	49.63	0.1200	B,C,E,G,H,I,L,M,N,O,P,R,S
41	67.90	1.3793	28.64	25.01	0.1200	B,E,G,H,I,M,N,P,S
42	68.28	1.3726	64.34	56.19	0.1200	B,C,E,G,I,M,O,P,R,S
43	68.46	1.3694	20.46	29.78	0.2000	A,B,C,E,H,I,L,M,N,P,R,S
44	73.44	1.2883	13.58	11.86	0.1200	A,B,C,D,E,G,H,I,M,N,O,P,R
45	73.66	1.2850	6.83	1.99	0.0400	B,C,D,E,G,H,I,L,M,N,O,P,Q,R
46	75.64	1.2562	27.53	24.04	0.1200	A,B,C,G,I,L,M,N,P,R,S
47	75.86	1.2531	14.16	8.24	0.0800	B,C,G,H,I,M,N,O,P,Q,R,S
48	79.84	1.2004	17.41	20.27	0.1600	A,B,D,G,I,L,M,N,O,P,R,S
49	80.00	1.1984	12.21	10.67	0.1200	A,B,C,D,G,I,M,N,O,P,Q,R,S
50	81.10	1.1849	21.47	18.75	0.1200	B,C,D,G,I,L,M,N,O,P,Q,R
51	81.42	1.1810	23.48	27.34	0.1600	A,B,D,G,I,L,M,N,O,P,R
52	81.70	1.1777	11.34	6.60	0.0800	A,B,C,G,I,L,M,N,O,P,R,S

Integrated Profile Areas

Based on calculated profile

Profile area	Counts	Amount
Overall diffraction profile	648957	100.00%
Background radiation	446677	68.83%
Diffraction peaks	202280	31.17%
Peak area belonging to selected phases	198393	30.57%
Peak area of phase A (Iron vanadium molybdenum oxide (4/1.98/3.02/20))	14371	2.21%
Peak area of phase B (Dibarium octafluorotriniccolate decafluorotetraniccolate)	15386	2.37%
Peak area of phase C (Heptabarium copper hexairon(III) fluoride)	10804	1.66%
Peak area of phase D (Sodium strontium iron(III) hexafluoride)	18230	2.81%
Peak area of phase E (Heptabarium bis(16-fluorotriferrate(III)) dihydrate)	9672	1.49%
Peak area of phase F (Barium gallium fluoride hydroxide hydrate (7/6/16/16/2))	10514	1.62%
Peak area of phase G (Niobium thallium oxide hydrate (33/10.5/88.5/1.5))	12675	1.95%
Peak area of phase H (Rubidium niobium tungsten oxide (12/30/3/90))	13471	2.08%
Peak area of phase I (Cadmium lead(IV) oxide - I)	2869	0.44%
Peak area of phase J (Potassium phosphorus tungsten oxide (.4/2/4/16))	4017	0.62%
Peak area of phase K (DICADMIUM TRIARSENIDE BROMIDE)	3267	0.50%
Peak area of phase L (Thallium niobium uranium oxide (1/2/2/11.5))	16534	2.55%
Peak area of phase M (Barium molybdenum phosphate (1/2/3))	4390	0.68%
Peak area of phase N (Calcium diphosphate - \b)	11662	1.80%
Peak area of phase O (Potassium tecto-phosphatovanadate(III) *)	15129	2.33%

Peak area of phase P (Dineodymium tetrabarium dicopper oxide)	2821	0.43%
Peak area of phase Q (Bismuth lead barium lanthanum copper oxide)	3010	0.46%
Peak area of phase R (Caesium oxomolybdenum(V) diphosphate)	11641	1.79%
Peak area of phase S (Titanium hexaniobium dithallium oxide)	2430	0.37%
Peak area of phase T (Sodium dirubidium tecto-hexaniobotriphosphate(V))	15499	2.39%
Unidentified peak area	3887	0.60%

Diffraction Pattern Graphics

Amounts of Phases and Elements (Weight %)

ChE LI BY

Phase composition:

Potassium tecto-phosphatovanadate(III) * (17.4%), Calcium diphosphate - \b (15.4%), Sodium strontium iron[III) hexafluoride (8.4%), Dibarium octafluorotnnic colate decafluorotetranic colate (8.2%), Iron vanadium molybdenum oxide (4/1.98/3.02/20) (7.9%), Sodium dirubidium tecto-hexaniobotriphosphate(V) (5.6%), Barium gallium fluoride hydroxide hydrate (7/6/16/16/2) (5.3%). Heptabarium bis(16-fluorotriferrate(III)) dihydrate (4.9%), Caesium oxomolybdenum(V) diphosphate (4.8%), Heptabarium copper hexairon(III) fluoride (4.8%), Niobium thalium oxide hydrate (33/10.5/88.5/1.5) (3.9%), Rubidium niobium tungsten oxide (12/30/3/90) (3.8%), Thallium niobium uranium oxide (1/2/2/11.5) (3.3%), Barium molybdenum phosphate (1/2/3) (1.3%), Titanium hexaniobium dithallium oxide (1.2%), DICADM/UM TRIARSENIDE BROMIDE (1.0%), Potassium phosphorus tungsten oxide (4/2/4/16) (1.0%), Dineodymium tetrabarium dicopper oxide (0.9%), Bismuth lead barium lanthanum copper oxide (0.5%), Cadmium lead(IV) oxide - I (0.4%)

Elemental composition:

O (24.99%), Ba (10.29%), F (10.00%), P (9.61%), Nb (7.27%), Fe (5.20%), V (5.05%), Ca (4.86%), Mo (3.97%), Ni (3.28%), Sr (2.61%), Ti (2.28%), Cs (1.52%), U (1.50%), Rb (1.45%), Ga (1.11%), W (1.05%), K (0.82%), Na (0.79%), Cd (0.54%), As (0.43%), Pb (0.35%), Cu (0.30%), Nd (0.24%), Br (0.15%), Bi (0.13%), La (0.09%), H (0.07%), Ti (0.04%) (LE: 35.05%)

Match! Phase Analysis Report

Sample: Sample#7

Sample Data	
File name	Sample#7.raw
File path	G:/.shortcut-targets-by-id/16KIMvpSIqVAUHFFggq9IVgYQzQybBTlu/Marwan - research/Concrete Mix Master Thesis/X-Ray/Birzeit University_XRD_Raw data
Data collected	Jul 13, 2023 07:16:32
Data range	5.030° - 90.030°
Original data range	5.000° - 90.000°
Number of points	4251
Step size	0.020
Rietveld refinement converged	No
Alpha2 subtracted	No
Background subtr.	No
Data smoothed	No
2theta correction	0.03°
Radiation	X-rave

1.540598 Å

Analysis Results

Phase composition (Weight %) Elemental composition (Weight %) Bariuth alicate berthenate coop4.%) Thallium niobium uranium oxide / Sodium strontium iro Cu (2 0 (26.3%) Copper dipotassiu Cr (2.9% K (3.0%) Sodium dirubidi.. Fe (3.6%) Rubidium niob. Mo (3.9%) Dibarium octa TI (4.1%) Nb (9.6%) Dithallium distro. Ba (4.1%) Potassium tecto-p... Ni (4.3%) Iron vanadium molyb. P (7.7%) Sr (4.4%)/ V (5.6%)/ Merenny ehromium strante. (...) Nonacaesium tecto-trialumonon.. F (6.9%) Index AmountName Formula sum Element Amount (weight %) (%) 26.3% 0 4.0 Thallium niobium uranium oxide (1/2/2/11.5) Nb2 O11.5 TI U2 Nb 9.6% В 2.2 Thallium niobium oxide (8/27.2/72) Nb27.2 O72 TI8 Na1.7 O44 P4 W12 С 1.0 Sodium tungstate phosphate * F V 6.9%(*) D 82 Sodium strontium iron(III) hexafluoride F6 Fe Na Sr 5.6% Na Nb6 O24 P3 Rb2 Sodium dirubidium tecto-hexaniobotriphosphate(V) Rubidium niobium tungsten oxide (12/30/3/90) Sr 4.4% 6.0 Nb30 O90 Rb12 W3 Ni 4.3% 4 4 G K O24 P7 V4 19.6 Potassium tecto-phosphatovanadate(III) * Ba 4.1% н Nonacaesium tecto-trialumononamolybdo(V)undecaphosphate(V) Al3 Cs9 Mo9 O59 P11 тι 4.1% 4.2 Niobium thallium oxide hydrate (33/10.5/88.5/1.5) 4 2 H3 Nb33 O90 TI10.5 NIOBIUM THALLIUM OXIDE (3.1/1/8.2) Nb3.09 O8.22 TI Fe 3.6% K Mercury chromium strontium copper carbonate oxide (0.46/0.54/4/2/1/6.88)C Cr0.54 Cu2 Hg0.46 O9.88 Sr4 κ 1.5 3.0% L 8.3 Iron vanadium molybdenum oxide (4/1.98/3.02/20) Fe4 Mo3.02 O20 V1.98 Cr 2.9% Μ 1.4 Hexastrontium trinitridodicuprate(I) dinitridocuprate(I) Cu3 N5 Sr6 Cu 2.7% Ν 1.0 Dithallium distrontium copper oxide Cu O6 Sr2 Tl2 Bi 2.5% Dibarium octafluorotriniccolate decafluorotetraniccolate Ba2 F18 Ni P Copper dipotassium dihydrogen phosphatochromate Cr2 Cu H2 K2 O14 P2 14.6 Rb 1.6% Q Bismuth molybdenum oxide (26.4/9.6/68.4) Bi26.4 Mo9.6 O68.4 2.0 Cs 1.5% R Bismuth barium lanthanum copper oxide (2/2.3/0.7/2/8) Ba2.3 Bi2 Cu2 La0.7 O8 W 1.1% 1.5 Na 0.8% Ba Ge3.125 O9 Si0.875 1 4 Barium silicate dermanate Ge 0.6% 0.1 Unidentified peak area La 0.3% Amounts calculated by RIR (Reference Intensity Ratio) method Ν 0.1%(*) AI 0.1% С 0.0%(*)

Details of identified phases

Wavelength

A: Thallium niobium uranium oxide (1/2/2/11.5) (4.0 %)* Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell I/Ic Calc. density Reference

Nb2 O11.5 TI U2 96-100-1356 0.612747^{*} 497 128 0.47^{*} P m n b orthorhombic a= 7.7130 Å b= 10.3290 Å c= 13.9470 Å 4.52 6.278 g/cm³ Gasperin M, "Synthese et structure de trois niobouranates d'ions monovalents: TINb~2~ U~2~ O~11.5~, K Nb U O~6~, et Rb Nb U O~6~", Journal of Solid State Chemistry **67**, 219-224 (1987)

*LE (sum)

33.4%

B: Thallium niobium oxide (8/27.2/72) (2.2 %)^{*}

Formula sum	Nb27.2 O72 TI8
Entry number	96-100-4151
Tatal number of neeks	0.659411
Total number of peaks	307 307
Peaks matched	
Intensity scale factor	0.28*
Space group	1m2 m
Crystal system	orthorhombic
Unit cell	a= 7.5340 Å b= 12.9920 Å c= 15.5550 Å
l/lc	4.82
Calc. density	5.795 g/cm ³
Reference	Dupont L, Hervieu M, Pelioquin D, Nowogrocki G, Ioudoui M, "Synthesis and crystal structure determination of H8 Nb27.2 O/2 using LEM and single-crystal x- ray differentian" lower language structure determination of H8 Nb27.2 O/2 using LEM and single-crystal x- ray differentian" lower language structure determination of H8 Nb27.2 O/2 using LEM and single-crystal x-
	ray unraction, sournal of Solid State Chemistry 133, 202-232 (1990)
C: Sodium tungstate phosphate	
* (1 0 %)*	
Formula sum	Na1.7 O44 P4 W12
Entry number	96-100-1273
Figure-of-Merit (FoM)	0.633607*
Total number of peaks	496
Peaks in range	496
Peaks matched	136
Intensity scale factor	0.27*
Space group	P 1 21/a 1
Crystal system	
Unit cell	a= 23.7750 A b= 5.2910 A c= 6.5880 A β= 93.470 °
I/IC Cala danaitr	10.40 6.400 e/cm ³
Calc. density	0. 109 g/c/II ⁻ Reamonues A. Groutt D. Labba Bh. Bayagu B. "Two New Members of a Sarias of Manaelinia Sadium Phoenbata Tungston Pronzes Na-ve, B-4-, O-9-, (W
Kelerence	Demininoussa A, Glouin F, Labberni, Naveau B, Two rew members of a Sense of wondoline Southanne indicate rungsteinbildes has $x^2 - x^2 -$
D: Sodium strontium iron(III)	
hexafluoride (8.2 %)*	
Formula sum	F6 Fe Na Sr
Entry number	96-100-0307
Figure-of-Merit (FoM)	0.600892*
Total number of peaks	499
Peaks in range	499
Peaks matched	81
Intensity scale factor	0.32*
Space group	P 21 21 21
Crystal system	orthorhombic
Unit cell	a= 5,4053 A b= 9.3103 A c= 10.3823 A
I/IC Cale density	1.51 2.55E c/m ³
Calc. density	3.000 p/c/II ⁻
Kelerence	Laural of Solid State and Increasic Chemistry 29 519-531 (1992)
E: Sodium dirubidium tecto-	
hexaniobotriphosphate(V) (6.0 %)	
Formula sum	Na Nb6 O24 P3 Rb2
Entry number	96-100-1863
Figure-of-Merit (FoM)	0.629717
Total number of peaks	152
Peaks in range	152
Peaks matched	36
Intensity scale factor	0.70
Space group	
	ungoniai (nexagoniai axes)
	a - 15.5516 A C - 10.5415 A
Calc density	
Reference	Costentin G. Borel M.M. Grandin A. Leclaire A. Raveau B. "A large family of niobium phosphates with the Ca0.5 Cs2 Nb6 P3 O24structure". Materials
	Research Bulletin 26, 301-307 (1991)
F: Rubidium niobium tungsten	
oxide (12/30/3/90) (4.4 %) [*]	
Formula sum	Nb30 O90 Rb12 W3
Entry number	96-100-1018
⊢igure-ot-Merit (FoM)	0.624619
Total number of peaks	
Peaks in range	
Peaks matched	
Space group	
l/lc	
Meas. density	4.570 a/cm ³
Calc. density	4.608 g/cm ³
Reference	Michel C, Guyomarch A, Raveau B, "Nouveaux echangeurs cationiques avec une structure a tunnelsentrecroises: les oxides A~12~ M~33~ O~90~ et A~12~
	M~33~ O~90~(H~2~ O)~12~", Journal of Solid State Chemistry 22 , 393-403 (1977)
G: Potassium tecto-	
phosphatovanadate(III) * (19.6 %)	
Formula sum	K 024 P7 V4
Entry number	
	0.652042
lotal number of peaks	499
Feaks in range	499 204
Intensity scale factor	
Space droup	0.04 P-1
Crystal system	Triclinic (anorthic)
Unit cell	a= 10.0846 Å b= 10.2309 Å c= 10.8283 Å α= 112.757° β= 109.226 ° γ= 104.675 °
l/lc	1.05
Calc. density	3.202 g/cm ³
Reterence	Bennamada L, Grandin A, Borel M M, Leclaire A, Raveau B, "A vanadium(III) phosphate with V~2~O~10~ octahedral units:KV~4~P~7~O~24~", Journal of Solid Store Chemical 2014 (002)
	Solid State Chemistry 104, 193-201 (1993)

H: Nonacaesium tecto-trialumononamolybdo(V)undecaphosphate(V) (4.2 %)^{*}

Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell I/Ic Meas. density Calc. density Reference	Al3 Cs9 Mo9 O59 P11 96-100-1642 0.604545 [*] 303 303 93 0.27 [*] P 63/m hexagonal a= 16.9890 Å c= 11.8660 Å 2.45 3.880 g/cm ³ 3.835 g/cm ³ Guesdon A, Borel M M, Leclaire A, Grandin A, Raveau B, "An aluminophosphate of molybdenum(V) with a tunnel structure: Cs9 Mo9Al3 P11 O50 ^{**} Journal of Solid State Chemistry 114 451-458 (1995)
I: Niobium thallium oxide hydrate	
(33/10.5/88.5/1.5) (4.2 %) [*] Formula sum Entry number	H3 Nb33 O90 TI10.5 96-100-1006
Total number of peaks Peaks in range Peaks matched	0.665743 161 161 55
Intensity scale factor Space group Crystal system Unit cell	0.52 [*] R -3 m trigonal (hexagonal axes) a= 7.5100 Å c= 43.2900 Å
l/lc Calc. density Reference	4.67 5.263 g/cm ³ Gasperin M, "Synthese d'une nouvelle famille d'oxydes doubles: A~8~^+^ B~22~^5+^O~59~ structure du compose a thallium et niobium", Acta Crystallographica B (24,1968-38,1982) 33 , 398-402 (1977)
J: NIOBIUM THALLIUM OXIDE	
(3.1/1/8.2) (2.3 %) Formula sum Entry number	Nb3.09 O8.22 TI 96-100-1011
Total number of peaks Peaks in range	0.616033 308 308
Peaks matched Intensity scale factor Space group	48 0.30 [*] C.2.2.21
Crystal system Unit cell I/Ic	orthorhombic a= 7.5510 Å b= 13.0050 Å c= 7.7340 Å 5.07
Calc. density Reference	5.448 g/cm ³ Gasperin M, "Un niobate de thallium de type 'bronze hexagonal' excedentaire encations", Acta Crystallographica B (24,1968-38,1982) 33 , 2306-2308 (1977)
K: Mercury chromium strontium copper carbonate oxide (0.46/0.54/4/2/1/6.88) (1.5 %) [*] Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor	C Cr0.54 Cu2 Hg0.46 O9.88 Sr4 96-100-1638 0.613438 [*] 218 218 29 0.22 [*]
Space group Crystal system Unit cell	P 4/m m m tetragonal a= 3.8747 Å c= 16.1555 Å
l/lc Calc. density Reference	5.59 5.258 g/cm ³ Pelloquin D, Hervieu M, Malo S, Michel C, Maignan A, Raveau B, "Two transition-metal-substituted superconducting mercury-basedoxycarbonates, Hg(1-x) Mx Sr4 Cu2 (C O3) O(6+d) (M=Cr and Mo)", Physica C (Amsterdam) (152,1988-) 246 , 1-10 (1995)
L: Iron vanadium molybdenum oxide (4/1 98/3 02/20) (8 3 %)*	
Formula sum Entry number	Fe4 Mo3.02 O20 V1.98 96-100-0124
Total number of peaks Peaks in range	0.686811 462 462
Peaks matched Intensity scale factor	116 0.63 [*]
Crystal system Unit cell	tetragonal a= 9.5390 Å c= 17.1411 Å
l/lc Calc. density Reference	 2.88 3.977 g/cm³ Laligant Y, Permer L, Le Bail A, "Crystal structure of Fe4 V2 Mo3 O20 determined from conventional X-raypowder diffraction data", European Journal of Solid State Inorganic Chemistry 32, 325-334 (1995)
M: Hexastrontium trinitridodicuprate(l) dinitridocuprate(l) (1.4 %) [*]	
Formula sum Entry number Figure-of-Merit (FoM)	Cu3 N5 Sr6 96-100-5040 0.629789 [*]
Total number of peaks Peaks in range Peaks matched	354 354 41
Intensity scale factor Space group	0.24 [*] P 42 m c
Crystal system Unit cell	tetragonal a= 8.6570 Å c= 7.3340 Å
Calc. density Reference	ი.იი 4.751 g/cm³ DiSalvo F J, Trail S S, Yamane H, Brese N E, "The crystal structure of Sr6 Cu3 N5 with isolated, bent (Cu(I)2 N3)(7-)anions and the single crystal structural

4.751 g/cm³ DiSalvo F J, Trail S S, Yamane H, Brese N E, "The crystal structure of Sr6 Cu3 N5 with isolated, bent (Cu(I)2 N3)(7-)anions and the single crystal structural determination of Sr Cu N", Journal of Alloys Compd. **255**, 122-129 (1997)

N: Dithallium distrontium copper	
oxide (1.0 %) Formula sum	Cu 06 Sr2 T/2
Entry number	06-100-1523
Figure-of-Merit (FoM)	0.614989*
Total number of peaks	144
Peaks in range	144
Peaks matched	21
Space group	U.34
Crvstal svstem	tetraconal
Unit cell	a= 3.7464 Å c= 22.3013 Å
l/lc	13.06
Calc. density	7.889 g/cm ³
Relefence	the solid solution TI-2~Ba~2-x~Sr~x~CuO~6+d~", European Journal of Solid State Inorganic Chemistry 30 , 7-18 (1993)
O: Dibarium octafluorotriniccolate	
decafluorotetraniccolate (10.7 %)	D-0 540 N/Z
Formula sum Entry number	Daz FIG NI/ 06-100-0250
Figure-of-Merit (FoM)	0.624057
Total number of peaks	500
Peaks in range	500
Peaks matched	146
Intensity scale factor	0.47
Space group Crystal system	H -1
Unit cell	$\alpha = 6.9240 \text{ Å} \text{ b} = 7.2180 \text{ Å} \text{ c} = 7.4370 \text{ Å} \alpha = 94.390^{\circ} \text{ B} = 93.200^{\circ} \text{ v} = 115.820^{\circ}$
l/lc	1.67
Calc. density	5.139 g/cm ³
Reference	Renaudin J, Ferey G, Kozak A, Samouel M, Lacorre P, "Crystal and magnetic structures of the ferrimagnet Ba~2~ Ni~7~ F~18~", Solid State Communications 65 185-188 (1988)
P: Copper dipotassium dihydrogei	1
phosphatochromate (14.6 %) [*]	
Formula sum	Cr2 Cu H2 K2 O14 P2
Entry number Figure-of-Merit (FoM)	96-100-7043
Total number of peaks	U.513908 496
Peaks in range	496
Peaks matched	123
Intensity scale factor	0.40*
Space group	P 1 21/c 1
Crystal system	
I/Ic	1.05
Calc. density	2.869 g/cm ³
Reference	Coing-Boyat J, Durif A, Guitel J C, "Structure cristalline d'un phosphochromate acide de cuivre potassium:Cu K-2~ H-2~ (P Cr O-7~)-2~", Journal of Solid
	State Chemistry 30 , 329-334 (1979)
Q: Bismuth molybdenum oxide	
(26.4/9.6/68.4) (2.0 %)*	
Formula sum	Bi26.4 Mo9.6 O68.4
Entry number	96-100-4135
Figure-of-interit (Foin)	0.683536
Peaks in range	497 Aq7
Peaks matched	78
Intensity scale factor	0.46*
Space group	P 1 2/c 1
Crystal system	monoclinic
Unit cell	a= 11.7525 A b= 5.8005 A c= 24.8024 A β= 102.867 °
Calc. density	5.58 g/cm ³
Reference	Vannier R-N, Abraham F, Nowogrocki G, Mairesse G, "New structural and electrical data on Bi-Mo mixed oxides with astructure based on (B12 O14)(infinite)
	columns", Journal of Solid State Chemistry 142, 294-304 (1999)
P: Bismuth barium lanthanum	
conner oxide (2/2 3/0 7/2/8) (4 5 %)	*
Formula sum	Ba2.3 Bi2 Cu2 La0.7 O8
Entry number	96-100-1701
Figure-of-Merit (FoM)	0.615640*
Total number of peaks	164
Peaks in range	164
Peaks matched Intensity scale factor	40
Space group	0.00 Fmmm
Crystal system	orthorhombic
Unit cell	a= 5.5710 Å b= 5.5830 Å c= 31.1040 Å
l/Ic Cale density	8.90 7.457 g/cm ³
Calc. density Reference	7.457 grcm ² Pham & O. Henvieu H. Michel C. Raveau B. "A new member of the 2212-type family: the ovide Bi2 Ba2+v La1-v Cu2 O8+d". Physica C. (Amsterdam)
	(152,1988-) 199, 321-327 (1992)
S: Bismuth barium lanthanum	
copper oxide // 6/2 5/0 0/2/9 2) // 4 9/1*	
(1.0/2.3/0.9/2/8.3) (1.4 %) Formula sum	Ba2 5 Bi1 59 Cu2 La0 91 O8 25
Entry number	96-100-1586
Figure-of-Merit (FoM)	0.602812 [*]
Total number of peaks	213
Peaks in range	213
reaks matched	3U a a 4*
Shace droup	U.31
Crystal system	tetragonal
Unit cell	a= 3.9380 Å c= 31.2130 Å
l/lc	873

Calc. density Reference 8.73 7.254 g/cm³ Hervieu M, Pham A Q, Michel C, Raveau B, "A 2212 bismuth cuprate with a non-modulated structure Bi~2-x~La~x~Ba~2.5~La~0.5~Cu~2~O~8.25~", Physica C (Amsterdam) (152,1988-) **209**, 449-455 (1993)

T: Barium silicate germanate * (1.4 %)^{*}

(1.4 /0)	
Formula sum	Ba Ge3.125 O9 Si0.875
Entry number	96-100-1067
Figure-of-Merit (FoM)	0.601248*
Total number of peaks	275
Peaks in range	275
Peaks matched	54
Intensity scale factor	0.17*
Space group	P31c
Crystal system	trigonal (hexagonal axes)
Unit cell	a= 11.5950 Å c= 9.7550 Å
l/lc	4.55
Meas. density	4.660 g/cm ³
Calc. density	4.673 g/cm ³
Reference	Goreaud M, Choisnet J, Des
	Benitoite et de Structure App

 Construction
 Construction

 Reference
 Goregud M, Choisnet J, Deschanvres A, Raveau B, "Synthese et Evolution Structurale de Nouveaux Silicogermanates Ba Ge(Ge~3-x~ Si~x~) O~9~ de Type Benitoite et de Structure Apparentee", Materials Research Bulletin 8, 1205-1214 (1973)

 (*)2theta values have been shifted internally for the calculation of the amounts, the intensity scaling factors as well as the figure-of-merit (FoM), due to the active search-match option 'Automatic zero point adaption'.

Search-Match

Settings	
Reference database used	COD-Inorg 2023.06.06
Automatic zeropoint adaptation	Yes
Downgrade entries with low scaling factor	sYes
Minimum figure-of-merit (FoM)	0.60
2theta window for peak corr.	0.30 deg.
Minimum rel. int. for peak corr.	0
Parameter/influence 2theta	0.50
Parameter/influence intensities	0.50
Parameter multiple/single phase(s)	0.50

Peak List

No.	2theta [°]	d [Å]	l/l0 (peak height)	Counts (peak area)	FWHM	Matched
1	9.13	9.6783	23.81	24.39	0.1600	B,L,P,Q
2	15.87	5.5799	14.69	18.82	0.2000	A,C,F,H,I,M,N,P,Q
3	20.91	4.2449	77.08	39.49	0.0800	A,B,C,D,G,H,L
4	22.99	3.8654	27.96	35.81	0.2000	A,B,C,E,G,H,J,K,L,M,Q,R,S
5	24.03	3.7004	7.67	5.89	0.1200	A,C,D,F,G,H,L,M,N,O,P,Q,R,S,T
6	25.77	3.4543	8.79	11.25	0.2000	A,C,D,E,H,K,L,M,O,P,Q
7	26.63	3.3447	1000.00	768.48	0.1200	A,B,C,D,E,F,G,H,I,J,L,M,N,O,P,Q,R,S,T
8	27.55	3.2351	14.71	18.84	0.2000	A,B,C,D,F,G,H,I,J,K,L,O,Q
9	29.41	3.0346	122.68	94.28	0.1200	A,B,C,E,F,G,I,J,L,M,O,P,Q
10	30.09	2.9675	21.14	16.25	0.1200	B,C,D,F,G,H,I,L,O,Q,R,S,T
11	30.95	2.8870	42.13	75.54	0.2800	A,B,C,F,G,H,I,L,M,N,P,Q,T
12	32.19	2.7785	135.05	172.97	0.2000/	A,B,C,D,E,F,G,H,I,K,L,M,N,O,P,Q,R,S,T
13	32.59	2.7454	148.34	152.00	0.1600	C,E,G,H,K,L,M,P,Q,R,S,T
14	33.33	2.6861	15.79	36.41	0.3600	A,B,C,D,G,H,J,K,L,M,P,Q,T
15	33.91	2.6414	25.60	59.03	0.3600	B,C,G,H,L,M,N,O,P,Q,R
16	34.35	2.6086	93.48	95.78	0.1600	A,B,C,D,F,G,H,I,K,L,O,P,Q,R,S
17	35.09	2.5553	12.71	22.79	0.2800	A,B,C,E,G,H,L,M,Q
18	36.53	2.4578	9.00	2.30	0.0400	A,B,C,D,F,G,H,I,J,K,L,O,P,Q,R,S,T
19	38.69	2.3254	15.47	3.96	0.0400	A,B,C,D,F,G,H,I,L,O,P,Q,T
20	39.47	2.2812	29.50	37.78	0.2000	A,C,D,F,G,H,I,K,L,M,O,P,Q,R,S
21	40.31	2.2356	20.76	26.59	0.2000	A,C,E,F,G,H,I,L,N,O,P,Q,R,S,T
22	41.25	2.1868	56.68	87.12	0.2400	A,B,C,G,H,L,M,O,Q,T
23	41.59	2.1697	8.85	9.07	0.1600	A,B,C,F,G,I,J,L,M,N,O,P,Q
24	42.47	2.1268	25.20	12.91	0.0800	A,B,C,D,E,F,G,H,I,J,L,M,O,P,Q,T
25	45.81	1.9792	33.30	17.06	0.0800	A,B,C,D,F,G,H,I,K,L,O,P,Q,R,S,T
26	46.89	1.9361	16.54	12.71	0.1200	A,B,C,D,E,G,H,J,K,L,M,O,Q,R,T
27	47.59	1.9092	11.09	11.36	0.1600	A,C,F,G,H,K,L,N,O,P,Q,R,S,T
28	48.57	1.8730	42.13	21.59	0.0800	A,B,C,D,E,F,G,H,I,J,L,M,N,O,P,Q,T
29	50.15	1.8176	74.34	57.13	0.1200	A,B,C,D,F,G,H,I,J,K,L,M,O,P,Q,T
30	51.71	1.7664	44.69	45.79	0.1600	A,B,C,D,F,G,H,I,J,K,L,N,O,P,Q,R,S,T
31	54.87	1.6719	15.92	20.39	0.2000	A,B,C,D,E,F,G,H,I,J,L,N,O,P,Q,R,S,T
32	56.43	1.6293	22.64	17.40	0.1200	A,B,C,D,E,F,G,H,I,J,K,L,N,O,P,Q,T
33	59.99	1.5408	46.83	23.99	0.0800	A,B,C,D,E,G,H,I,L,M,O,P,Q,T
34	62.21	1.4911	28.82	36.92	0.2000	A,B,C,D,F,H,I,J,K,L,O,P,R,S,T
35	62.39	1.4872	16.93	21.68	0.2000	A,B,C,D,F,H,I,J,K,L,M,N,O,P,T
36	67.79	1.3813	20.36	15.65	0.1200	A,B,C,D,F,H,I,J,K,L,M,N,O,P,R,S,T
37	68.29	1.3724	26.35	33.75	0.2000	A,B,C,D,F,H,I,J,K,L,M,O,P,R,S,T
38	75.71	1.2552	42.92	21.99	0.0800	A,B,C,D,J,K,L,M,O,P,S,T
39	75.93	1.2522	17.88	13.74	0.1200	A,B,C,D,F,I,J,L,M,O,P
40	79.91	1.1995	33.61	25.83	0.1200	A,B,C,D,E,J,K,L,M,N,O,P,R,S
41	80.13	1.1968	17.88	13.74	0.1200	A,B,D,J,K,L,M,N,O,P,R,T
42	81.47	1.1804	23.57	18.11	0.1200	A,B,D,E,J,K,L,M,O,P,R,S,T
43	81.71	1.1776	8.76	6.73	0.1200	A,B,D,J,K,L,M,N,O,P,R,S,T
44	83.85	1.1529	9.58	7.36	0.1200	A,D,J,K,L,M,O,P,R,S,T

Integrated Profile Areas

Based on calculated profile

Profile area	Counts	Amount
Overall diffraction profile	591073	100.00%
Background radiation	419413	70.96%
Diffraction peaks	171660	29.04%
Peak area belonging to selected phases	170898	28.91%
Peak area of phase A (Iron vanadium molybdenum oxide (4/1.98/3.02/20))	11379	1.93%
Peak area of phase B (Dibarium octafluorotriniccolate decafluorotetraniccolate)	14771	2.50%
Peak area of phase C (Sodium strontium iron(III) hexafluoride)	12203	2.06%
Peak area of phase D (Niobium thallium oxide hydrate (33/10.5/88.5/1.5))	10152	1.72%
Peak area of phase E (NIOBIUM THALLIUM OXIDE (3.1/1/8.2))	3064	0.52%
Peak area of phase F (Rubidium niobium tungsten oxide (12/30/3/90))	11314	1.91%
Peak area of phase G (Barium silicate germanate *)	3580	0.61%
Peak area of phase H (Sodium tungstate phosphate *)	5189	0.88%
Peak area of phase I (Thallium niobium uranium oxide (1/2/2/11.5))	13637	2.31%
Peak area of phase J (Dithallium distrontium copper oxide)	5456	0.92%
Peak area of phase K (Potassium tecto-phosphatovanadate(III) *)	15020	2.54%
Peak area of phase L (Bismuth barium lanthanum copper oxide (1.6/2.5/0.9/2/8.3))	4148	0.70%
Peak area of phase M (Mercury chromium strontium copper carbonate oxide (0.46/0.54/4/2/1/6.88))	4918	0.83%
Peak area of phase N (Nonacaesium tecto-trialumononamolybdo(V)undecaphosphate(V))	10746	1.82%

Peak area of phase O (Bismuth barium lanthanum copper oxide (2/2.3/0.7/2/8))	4423	0.75%
Peak area of phase P (Sodium dirubidium tecto-hexaniobotriphosphate(V))	10447	1.77%
Peak area of phase Q (Bismuth molybdenum oxide (26.4/9.6/68.4))	5020	0.85%
Peak area of phase R (Thallium niobium oxide (8/27.2/72))	4866	0.82%
Peak area of phase S (Hexastrontium trinitridodicuprate(I) dinitridocuprate(I))	3134	0.53%
Peak area of phase T (Copper dipotassium dihydrogen phosphatochromate)	17429	2.95%
Unidentified peak area	763	0.13%

Diffraction Pattern Graphics

Match! Copyright © 2003-2023 CRYSTAL IMPACT, Bonn, Germany
Amounts of Phases and Elements (Weight %)

Phase composition:

Potassium tecto-phosphatovanadate(III) * (19.6%), Copper dipotassium dihydrogen phosphatochromate (14.6%), Dibarium octafluorotriniccolate decafluorotetraniccolate (10.7%), iron vanadium molybdenum oxide (4/1.98/3.02/20) (8.3%), Sodium strontium iron(III) hexafluoride (8.2%), Sodium dirubidium tecto-hexaniobotriphosphate(V) (6.0%), Rubidium niobium tungsten oxide (12/30/3/90) (4.4%), Nonacaesium tectotrialumononamolybdo(V)undecaphosphate(V) (4.2%), Niobium thallium oxide hydrate (33/10.5/88.5/1.5) (4.2%), Thallium niobium uranium oxide (1/2/2/11.5) (4.0%), NIOBIUM THALLIUM OXIDE (3.1/1/8.2) (2.3%), Thallium niobium oxide (8/27.2/72) (2.2%), Bismuth molybdenum oxide (26.4/9.6/66.4) (2.0%), Bismuth barium lanthanum copper oxide (2/2.3/0.7/2/8) (1.5%), Mercury chromium strontium copper carbonate oxide (0.46/0.54/4/2/1/6.88) (1.5%), Barium silicate germanate * (1.4%), Hexastrontium trinitridodicuprate(I) dinitridocuprate(I) (1.4%), Bismuth barium lanthanum copper oxide (1.6/2.5/0.9/2/8.3) (1.4%), Dithallium distrontium copper oxide (1.0%), Sodium tungstate phosphate * (1.0%)

Elemental composition:

C (25.32%), Nb (9.57%), P (7.66%), F (6.89%), V (5.64%), Sr (4.40%), Ni (4.28%), Ba (4.12%), Ti (4.10%), Mo (3.90%), Fe (3.62%), K (3.05%), Cr (2.90%), Cu (2.75%), Bi (2.50%), U (1.81%), Rb (1.61%), Cs (1.48%), W (1.12%), Ns (0.80%), Ge (0.61%), Ls (0.30%), Hg (0.18%), N (0.12%), Al (0.10%), Sr (0.07%), H (0.06%), C (0.02%) (LE 33.41%)

Match! Phase Analysis Report

Sample: Sample_B

Sample Data File name

File path

Data collected Data range Original data range Number of points Step size Rietveld refinement converged Alpha2 subtracted Background subtr. Data smoothed 2theta correction Radiation Wavelength Sample#B.raw G:/.shortcut-targets-by-id/16KIMvpSIqVAUHFFggq9IVgYQzQybBTlu/Marwan - research/Concrete Mix Master Thesis/X-Ray/Birzeit University_XRD_Raw data Jul 13, 2023 08:02:51 4.950° - 89.950° 5.000° - 90.000° 4251 0.020 No No No No No No No No 1.540598 Å

Analysis Results

Elemental composition (Weight %)

Phase composition (Weight %)

IndexAmountName Formula sum				Element	Amount (weight %)
A	1.1	Vttrium oxide	03 1/2	V	13.5%
В	14.6	Vanadium oxide (5/9)	09 V5		100000
C	3.4	Sodium nitrate Nitratine	N Na D3	P	5 6%
D	10.9	Silicon oxide \$-aloha Quartz low	02 Si	Ni	4:3%
-		Protect data of april address for	MICH CHIEFELL M.	Nb	4 1%
1	11.4	Processium texto-phosphatovanedater(0) h	K 004 P2 MM	Ca	3.9%
				Ba	3.6%
H	2.9	Potassium barium phosphate	Bak O4 P	AL	3 4 96
1	4.3	Niobium thallium oxide hydrate (33/10 5/88 5/1.5)	H3 Nb33 090 Ti10 5	F	1.000
1	0.6	Holmium oxide	Ho2 O3	Ti	3.0%
K	0.7	Hexastronilum Innihidodicuprate(I) dinihidocuprate(I)	CU3 N5 Sr6		COLUMN TO A
L	0.5	Dysprosium oxide	Dv2 03	TI	1.4%
M	2.7	Dinickel diphosphate	Ni2 07 P2		3,475
N	75	Dibe our octalloprotonicco al decalloprotoniccold	0B32 F10 M7	1	1.2%
0	23	Chromium uranium(V) oxide	Cr O4 U	Na.	0.9%
P	3.6	Calcium carbonate Calcite	C Ca O3	Y	0.9%
0	1.9	Caesium zinc phosphate(V) - I	Cs O4 P Zn	Cs	0.8%
R	1.9	Antimony selenide iodide	I Sb Se	Rb	0.8%
S	11.5	Aluminium pentaoxotitanate	AI2 O5 TI	Sb	0.7%
100	6.5		CH 710752	N	0.6%(*)
	1.7	Unidentified peak area			ALCOLD,
				Sr	0.5%
Amounts calculated by RIR (Reference Intensity Ratio) method			EN	0.5%	
				2.4	

Details of identified phases

A: Yttrium oxide (1.1 %) Formula sum Entry number Figure-of-Ment (FoM)	03.Y2 96-100-9014 0.633476
Total number of peaks	60
Peaks in range	80
Peaks matched	16
Intensity scale factor	0.32
Space group	Ta -3
Crystal system	CALCHC
Unit cell	a= 10.6056 A
We	9/22
Laic density	5.029 g/cm*
Reterence	Baldinozzi G. Bérar JF., Calvanii G., "Rietveld retinement of two-phase Zr-doped Y+2~O~3~", Materials Science Forum 278- 281, 680-685 (1998)
E: Vanadium oxide (5/9) (14.6	36)

Formula sum	09 V5
Entry number	96-100-8616
Figure-of-Ment (FoM)	0.603496
Total number of peaks	497
Peaks in range	497
Peaks matched	183
Intensity scale factor	0.40
Space group	P-I
Crystal system	třeline (anorhic)
Unit cell	a= 7.0050 A b= 8.3629 A c= 10.9693 A o= 91.080° B= 108.340 ° y= 110.399 °
I/Ic	0.88
Calc. density	4.687 g/cm ²
Reference	Le Page Y, Bordel P, Marezio M, "Valence ordening in //-5-O-9- below 120K", Journal of Solid Statu Chemistry 92, 380-585 (1991)

C: Sodium nitrate Nitratine (3.4 %)

Formula sum	N Na O3
Entry number	96-101-1030
Figure-of-Ment (FoM)	0.614287
Total number of peaks	62
Peaks in range	62
Peaks matched	10
Intensity scale factor	0.32
Space group	R-30
Crystal system	rhombohedral
Unit cell	e= 6 3290 Å α= 47.260°
1/IG	2.95
Meas density	2.260 g/cm ³
Calc. density	3.547 g/cm ²
Reference	Elliott N. "A Rodotermination of the Carbon - Oxygen Distance in Calcile and theNittogen - Oxygen Distance in Sodium Nitrate", Journal of the American Chemical Society 59, 1380-1382 (1937)

D: Silicon oxide 3-alpha Quartz

low (10.9 %) Formula sum Enter sumber	02 51
Figure-of-Merit (FoM)	D 696425
Total number of peaks Peaks in range Peaks matched Intensity scale factor	70 70 25 0.96
Space group Crystal system Unit cell Vic	P 312 1 vigonal (hexagona) axes) a= 4 9130 Å = 5.4040 Å 2.91
Reference	2.660 grom- 2.649 g/orn ⁻ Wei P. H., "Die Bindung im Quarz". Zeitschnift fuer Kristallographie. Kristallgeometrie. Kristallphysik.Wistallthemis (~144.40V7) 92, 355-362 (1935)

Formula aum	Nb30 Q90 Rb12 W3
Entry number	96-100-1018
Figure-of-Merit (FoM)	0.637895
Total number of peaks	161
Peaks in range	161
Peaks matched	52
Intensity scale factor	0.59
Space group	RGm
Crystal system	trigonal (hexagonal axes)
Unit cell	a= 7.4860 A c= 43.1000 A
MG	4.33
Meas density	4.570 g/cm ²
Calc. density	4.608 g/cm°
Reference	Michel C, Guyomarch A, Raveau B, "Nouveaux echangeurs cationiques avec une structure a tunnelsentrecroises les ordes: A-12- M-33- D-90- et A-12- M-33- C-90-(H-2- O)-12-*. Journal of Solid State Chemistry 22, 393-403 (1977)

F: Polassium lecto-

K 024 P7 V4
96-100-1665
0.643511
489
499
207
0.57
Pel
(ricline (anorthic))
a= 10.0646 Å b= 10.2309 Å c= 10.8263 Å a= 112.757° B= 109.226 ° y= -04.876 °
1.05
3,202 g/cm ²
Benhamada L. Grandin A. Borel M M. Leclaire A, Raveau B, "A vanadium(III) phosphate with V-2-0-10- octanedral units KV-4-P-7-0-24-", Journal of Solid State Chemistry 104, 193-201 (1993)

G: Potassium iodate telluric

acid (1.6 %) Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell I/Ic Calc. density Reference

H: Potassium barium

phosphate (2.9 %)" Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell Unc Calc: density Reference 96-100-8207 0.640600 499 115 0.24" P c 21 m orthorhombic a= 14 2200 Å b= 6.6960 Å c= 8.6720 Å 4.76 3.520 g/om² AVerauch-Pouchot M. T. "Crystal Chemistry of Some Adultion Compounds of Alkali Iodates WithTellunc Acid", Journal of Belief State Chemistry **49**, 368-378 (1983)

Ba K O4 P
20-100-7102
0.015253
300
300
D.ST
r (ma)
~ 7.700 Å $\rightarrow 5.6630$ Å ~ 1.0720 Å
341
4 140 p/pm ²
Masse R. Duhr A. "Chemical preparation and crystal structure refinament of h Bs P. D-4+monorphosphate" dournal of Solid
State Chemistry 71, 574-676 (1987)

I: Niobium Inallium oxide hydrate

(33/10.5/88.5/1.5) (4.3 %)" Formula sum Entry number Figuro-of-Meril (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system

H3 Nb33 090 THE 5 96-100-1006 0.676282 161 161 59 0.63 R -3 m Urigonal (hexagonal axes)

116 | K. O9 Te

Unit cell I/Ic Calc: density Reference

J: Holmium oxide (0.6 %)

Formula sum Entry number Figure-of-Ment (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell Vic Calc: density Reference

K: Hexastrontium trinitridodicuprate(I) dinitridocuprate(I) (0.7 %)

Formula sum Entry number Figure-oF-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell I/Ic Calc: density Reference

L: Dysprosium oxide (0.5 %)

Formula sum Entry number Figure-of-Mant (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell Ulc Calc. density Reference

M: Dinickel diphosphate (2.7 %)

Formula sum Entry number Figure-of-Meni (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell Unit Meas-density Reference a= 7 5100 Å c= 43 2900 Å
 4.67
 5.263 g/cm²
 Gasperin M, "Synthese d'une houvelle famille d'oxydes doubles. A-8~*** B-22~*5**O~58~ structure du compose a thailium et niobium", Acta Crystallographica B (24, 1968-38, 1982) 33, 398-402 (1977)

Ho2 03 96-101-0336 0.605949 84 84 15 0.31 121 3 cubic a= 10.5800 Å 17.87 5.477 g/cm⁵ Zachanasen W. "The crystal structure of the modification C of the sesquicoides of therare earth metals, and of indium and thallium.", Norsk Geologisk Tidsakrift 9, 310-316 (1927)

Cu3 NB St6
95-100-5040
D.630172
254
354
46
0.15
P 42 m c
(etragonal
= 8.6570 Å C= 7.3340 Å
5.65
17E) a/cm ²
A ST grant
Disavo F J, trail S S, tranane H, brese N C, The drystal structure of Srb CU3 N5 with isolated, bent (CU(1)2 N3)(7-jantomi
and the single crystal structural determination of Sr Cu IV, Journal of Afloya Compd. 255, 122-129 (1907)

Dy2 03					
96-101-0337					
0.634746					
84					
84					
14					
0.30					
1213					
cubic					
a= 10.6300 Å					
17.60					
8.250 g/cm*			and the second sec		
Zachanasen W "The crystal str	ucture of the modificate	in C of the sesau	wondes of therare e	anth metals is	and of indium and
Ihailium.", Norsk Geologisk Tida	sakrift 9, 310-316 (1927)	1			

2 07 P2
5-100-7248
644435
30
00
B
22
121/a
onoclinic
= 5.2120 A b= 9.9130 A c= 4.4750 A B= 97.460 °
59
060 ð/aur,
220 g/cm ²
asse R, Guitei J C, Duni A, "Structure cristalline d'une nouvelle variante de pyrophosphale denickel NI2 P2 O7", Materiais

N: Dibarium octafluorotriniccolate

decafluorotetraniccolate (7.	9 %)
Formula sum	Ba2 F18 N/7
Entry number	96-100-0249
Figure-of-Ment (FoM)	0.605674

Research Bulleum 14, 337-341 (1979)

Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell I/Ic Calc density Reference

O: Chromium uranium(V)

oxide (2.3 %)^{*} Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell I/Ic Calc: density Reference

P: Calcium carbonate

C Ca 03

Calcite (3.6 %)⁺ Formula sum Entry number Figure-of-Meril (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell I/Ic Calc: density Reference

Q: Caesium zinc phospitate(V) -

1 (1.9 %)⁷ Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell I/Ic Calc. density Reference

R: Antimony selenide

Iodide (1.9 %)" Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell Inc Calc. density Reference 498 498 161 0:33 P -1 triclinic (anorthic) = 6 9370 Å t= 7 2290 Å c= 7.4560 Å d= 94.370° B= 93 160 ° V= 115.860 ° 1.35 5.110 g/cm² Renaudin J, Ferey G, Kozak Å, Samouel M, Lacorre P, "Crystal and magnetic structures of the ferrimagnet Ba~2~ Nr-7 F~18~", Solid State Communications **65**, 185-186 (1988)

Cr O4 U 96-100-8068 0.640274' 215 335-33 0.94' P b c n orthorhombic a= 4 8710 Å c= 11 7870 Å c= 5.0530 Å 12.96 8.105 g/cm² Bacmann M, Bertaut E F, "Structure de U Cr O-4-", Bulleón de la Societé Francaise de Mineralogie et de Cristallographie(72,1949-100,1977) 87, 275-276 (1964)

96-101-0929				
0.701855				
64				
64				
15				
0.34				
R-30				
rhombohedral				
a= 8 3600 Å a= 46.100°				
3.02				
4.035 g/cm*				
Elliott N, "A Redeterministion of the Carbon - Oxyg	gen Distance in Calcile	and the Nitrogen - Oxy	gen Distance	in Sodium
Nitrate", Journal of the American Chemical Society	y 59, 1380-1382 [T937	7)		

Cs O4 P Zn 96-100-7239 0.615548 497 497 70 0.29 P n m a orthorhombic = 9.1949 Å b= 5.4900 Å c= 9.3880 Å 5.09 4.110 g/cm² Blum D, Dunl Å. Averouch-Pouchot M T, "Crystal structures of the three forms of Cs Zn P C4", Ferroelectrics **69**, 283-292-(1986)

1 Sb Se 96-100-8205 0.647549 488 488 43 0.45 P n m a orthorhombic a= 8 6980 Å b= 4.1270 Å c= 10.4120 Å 7 57 5.822 g/cm² Ibanez Å, Jurnas J C, Olivier-Fourcade J, Philippot E, Maurin M, "Sur les Chalcogeno-iodures d'antimoine SbXI- (X=S.Se,Te) Structures etspectroscopie Moessbauer de *121*Sb* Journal of Solid State Chemistry 48, 272-283 (1983)

S: Aluminium

pentaoxotitanate (17.5 %)" Formula sum Entry number Figure-of-Ment (FoM)	Al2 OS TI 96-100-0061 0.604941
Total number of peaks Peaks in range Peaks matched	233 233 29
Intensity scale factor Space group Crystal system Unit celt	0.55 B p m m orthorhombic a= 9.4290 A b= 9.6360 A c= 3.5910 A
I/Ic Calc: density Reférence	1.54 3.701 g/cm ² Morosin B, Lynch R W, "Structure studies on AF-2~ Ti O~5~ at room temperature and at 600C", Acta Crystallographica B (24,1968-36,1982) 28, 1040-1046 (1972)

T. Ca4 F2 07 Si2 (5.5 %) Formu

Formula sum	Ca4 F2 07 Sia
Entry number	96-110-015A
Figure-of-Meril (FoM)	0.651531
Total number of peaks	500
Plaaks in range	500
Peaks matched	163
Intensity scale factor	0.26
Space group	P 1 21/c 1
Crystal system	monoclima
Unit cell	= 7.5397 Å t= 10.5338 Å c= 10.9070 Å 8= 109.557*
I/IC	1.54
Calc: density	2.982 g/cm ²
Reference	Kruger Hannes Kahlenberg Velker

172theta values have been shifted internally for the calculation of the amounts, the intensity scaling factors as well as the figure of-ment (FoM), due to the active search-match option 'Automatic zero point adaption'

Search-Match

Settings

Reference database used	COD-Inorg 2023 06.06
Automatic zeropoint adaptation	Yes
Downgrade entries with low scaling fai	ctorsives
Minimum figure-of-ment (FoM)	0.60
2theta window for peak corr.	0.30 deg
Minimum rel. int. for peak corr.	0
Parameter/influence 2theta	0.50
Parameter/influence intensities	0.50
Parameter multiple/single phase(s)	0.50

Peak List

No.	2theta [7]	d [A]	1/10 (peak height)	Counts (peak area)	FWHM	Matchod
- B.	18.01	4,9214	16 98	10.58	0.0800	BEGHM
2	20.79	4:2692	141.84	176.77	0 1600	A.B.D.F.G.J.K.D.S.T
3	22.99	5.8664	20.60	19.25	0.1200	B.C.F.G.H.K.O.P.R
.4	25.97	5.7095	13.80	8.60	0.0800	A.B.E.F.G.I.J.K.N.T
5	26.57	3.3521	1000.00	934.72	0.1200	BDEFGHIJKLMNOORST
6	27.23	1.2723	7.64	28.58	0.4800	BEGIMOT
Τ.	29.35	5.0406	187,63	350.76	0.2400	A.B.C.E.F.G.H.I.J.K.L.M.N.O.P.R.T
0	30.87	2.8943	44.42	69.21	0.2000	BEFGIKMORT
9	32.13	27836	13.32	12.45	0.1200	B.C.E.F.I.K.M.N.R.
tó	32.51	2.7519	13.01	52.72	0.5200	B,F,G,K,Q,S
011	33.81	2.6490	13 24	12.37	0.1200	AFGJKLMNRST
12	34.05	2.6309	10,27	6.40	0.0800	B,F,G,O,T
13	35.91	2.4988	16 74	20.86	0.1600	ABEFGHIJLMNPRT
14	36.49	2.4604	19.91	24.81	0.1600	B.D.E.F.G.H.I.M.N.T
15	39.39	2.2857	52.41	97.98	0.2400	BDEFGHIKMNPQST
16	40.23	2,2399	22.91	14.28	0.0800	B.D.E.F.G.H.I.J.M.N.O.Q.R.T
17	41.13	2.1929	10.50	19.63	0.2400	B.F.G.H.K.N.O.Q.T
10	42.37	2.1315	35,79	22.30	0.0800	B.C.D.E.F.G.H.I.K.M.N.O.Q.R.S.T
19	43.09	2.0976	22.41	27.93	0.1600	B.F.G.H.I.K.L.M.N.O.F.Q.T
20	45.73	1.9824	12.30	15.33	0.1600	B.D.E.F.G.I.N.R.T
21	47.41	1.9160	27.98	34.87	0.1600	B.E.F.G.H.I.M.N.O.P.R.T
22	48.45	1.8773	23 57	58.74	0.3200	ABCEFGHIJKLNOPORT
23	50.09	1.8196	212.73	132.56	0.0800	ABDEFGHIJKLMNRT
24	50.75	1.7975	7.21	8.99	0.1600	B.D.E.F.G.H.I.K.M.N.Q.R.S.T
25	54.81	1.6736	12.09	18 83	0.2000	ABDEFGHIJLMNOORST
26	55.23	1.6618	10.26	8.50	0.1200	B.D.E.F.G.H.I.K.M.N.Q.R.T
27	57.33	1.6058	12.65	23 62	0.2400	ABDEFGHIKLMNOPORST
28	59.91	1.5427	171.04	106 58	9.0800	B.C.D.F.G.K.M.N.O.R.T

29	60.07	1.5390	86 69	54.02	0.0800	BEGIKLNOOT
30	60.65	1.5256	921	2.87	0.0400	A.B.E.G.H.I.J.K.M.N.O.Q.R.T
31	60.89	1.5202	8.25	15.43	0.2400	B,C,E,G,H,I,K,M,N,O,P,R,S,T
\$2	63.95	1.4546	6.43	8.02	0.1600	B.D.E.G.H.I.K.M.N.Q.R.S.T
\$3	65.73	1.4195	5.66	3.63	0.0800	A.B.D.E.G.H.I.J.K.L.M.N.O.P.O.T
-34	67.67	1.3634	29.06	27.16	0.1200	B.D.E.G.H.I.N.Q.T
35	67.85	1.3802	14.52	13.57	0.1200	B.E.G.H.I.K.N.R.T
36	68.07	1.3763	21 65	20.24	0.1200	BHKNOQST
37	68.23	1.3734	18.98	23.67	0.1600	B.D.E.G.H.I.K.N.O.Q.R.S.T
38	73.39	1.2891	6.86	8.57	0.1600	A.D.E.G.H.I.K.L.M.N.O.Q.R.T
-39	75.59	1.2569	17.27	18.76	0.0800	DEGHKMNOORST
40	75.81	1.2538	8.66	5.40	0.0800	A.G.H.I.K.L.M.N.O.Q.S.T
41	79.83	1.2005	12.49	7.78	0.0800	ACDGHKLMNT
42	80.01	1.1982	7.16	11.15	0.2000	D.G.H.J.K.M.N.O.O.R.S.T
43	81.11	1.1848	18 B5	17.62	0.1200	A.D.G.H.K.M.N.P.O.R.S
44	B1.37	1.1816	18,37	17.17	0.1200	C.D.G.J.K.M.N.O.Q.R.S
45	\$1.65	1 1783	5 80	3.61	0.0800	G.K.M.N.O.P.O.R.S
46	83.75	1.1540	9.79	9.15	0.1200	ACDGJKMNORS
47	83.97	1,1515	6.34	13.84	0.2800	G.H.N.P.O.S

Integrated Profile Areas

Based on calculated profile

Profile area	Counts	Amount
Overall diffraction profile	625091	100.00%
Background radiation	422104	67 53%
Diffraction peaks	202987	32.47%
Peak area belonging to selected phases	192049	30 72%
Peak area of phase A (Yttrium oxide)	2618	0.42%
Peak area of phase B (Variadium oxide (5/9))	9892	1 58%
Peak area of phase C (Sodium nitrate Nitratine)	2336	0.37%
Peak area of phase D (Silicon oxide S-alpha Quartz low)	31334	5.01%
Peak area of phase E (Rubidium nichlum tungsten oxide (12/30/3/90))	15392	2.46%
Peak area of phase F (Polassium lecto phosphalovanadale(III) *)	20917	3 35%
Peak area of phase G (Potassium lodate telluric acid)	6738	1.08%
Peak area of phase H (Potassium barium phosphale)	9088	7.45%
Peak area of phase I (Niobium Inallium oxide hydrate (35/10,5/88.5/1.5))	16375	2.61%
Peak area of phase J (Holmium oxide)	3141	\$ 50%
Peak area of phase K (Hexastrontium minihidodicuprate(I) dinihidocuprate(I))	2063	0.33%
Peak area of phase L (Dysprosium onde)	2272	0.36%
Peak area of phase M (Dinickel diphosphate)	3671	0.58%
Peak area of phase N (Dibarium octalluorothinccolate decalluorotetraniccolate)	16120	2.58%
Peak area of phase O (Chromium uranium(V) oxide)	14398	2 30%
Peak area of phase P (Calcium carbonate Calcite)	3930	0.63%
Peak area of phase Q (Caesium zinc phosphate(V) II	6466	1.03%
Peak area of phase R (Antimony selenide iodide)	7884	7.26%
Peak area of phase S (Aluminium pentaci/otitanate)	11140	1.78%
Peak area of phase T (Ca4 F2 07 5/2)	6391	7 02%
Unidentified beak area	10937	1.75%

Diffraction Pattern Graphics

Match! Copyright @ 2003-2023 CRYSTAL IMPACT, Bonn, Germany

Amounts of Phases and Elements (Weight %)

Phase composition:

Potassium tecto-phosphatovanadate[III] " (17,4%), Vanadium oxide (5/9) (14,6%), Aluminium pentaoxotitanate (11.5%), Silicon oxide S-alpha Quartz low (10.9%), Dibarium octafluorotriniccolate decafluorotetraniccolate (7.9%), Ca4 F2 O7 Si2 (5.5%), Rubidium niobium tungsten oxide (12/30/3/90) (4.4%), Niobium thallium oxide hydrate (33/10.5/88 5/1.5) (4.3%), Calcium carbonate Calcite (3.6%), Sodium nitrate Nitratine (3.4%), Potassium barium phosphate (2.9%), Dinickel diphosphate (2.7%), Chromium uranium(V) oxide (2.3%), Antimony selenide iodide (1.9%), Caesium zinc phosphate(V) - I (1.9%), Potassium iodate telluric acid (1.6%), Yttnum oxide (1.1%), Hexastrontium trinitridodicuprate(I) dinitridocuprate(I) (0.7%), Holmium oxide (0.6%), Dysprosium oxide (0.5%)

Elemental composition:

O (34.94%), V (13.52%), Si (5.93%), P (5.60%), Ni (4.27%), Nb (4.10%), Ca (3.88%), Ba (3.61%), AI (3.42%), F (3.21%), Ti (3.04%), U (1.57%), Ti (1.39%), K (1.37%), I (1.20%), Na (0.93%), Y (0.87%), Cs (0.84%), Rb (0.78%), Sb (0.71%), N (0.63%), Ha (0.49%), Sr (0.49%), Dy (0.47%), Se (0.46%), Te (0.45%), C (0.44%), W (0.42%), Zn (0.41%), Cr (0.34%), Cu (0.18%), H (0.02%) (LE 39.24%)

Match! Phase Analysis Report

Sample: Sample_G

Sample Data File name File path

Data collected Data range Original data range Number of points Step size Rietveld refinement converged Alpha2 subtracted Background subtr. Data smoothed 2theta correction Radiation Wavelength Sample_G.raw G:/.shortcut-targets-by-id/16KIMvpSIqVAUHFFggq9IVgYQzQybBTlu/Marwan - research/Concrete Mix Master Thesis/X-Ray/Birzeit University_XRD_Raw data Jul 13, 2023 09:18:14 4.800° - 89.800° 5.000° - 90.000° 4251 0.020 No No No No No No No No X-rays

Analysis Results

Phase composition (Weight %)

1.540598 Å

Index	Amour (%)	ntName	Formula sum	Element O	Amount (weight %) 26.6%(*)
Α	1.7	Tris(dibromophosphazene)	Br6 N3 P3	Nb	10.3%
В	0.4	Thallium Thallium(III) niobium oxide (1.7/0.3/2/6.3)	Nb2 O6.271 Tl2	Р	9.4%
С	6.3	Rubidium tecto-phosphatodiniobate	Nb2 O8 P Rb	Ba	9.2%
D	4.0	Rubidium niobium tungsten oxide (12/30/3/90)	Nb30 O90 Rb12 W3	Ni	7.0%
E	16.8	Potassium tecto-phosphatovanadate(III) *	K O24 P7 V4	F	5.8%(*)
F	2.2	Potassium iodate telluric acid	H6 I K O9 Te	V	4.8%
G	3.0	Potassium barium phosphate	Ba K O4 P	ĸ	3.0%
н	4.0	Niobium thallium oxide hydrate (33/10.5/88.5/1.5)	H3 Nb33 O90 TI10.5	Cs	3.0%
			Fe1.75 O11 Pb V4.25	Cr	2.5%
J	1.1	Hexastrontium trinitridodicuprate(I) dinitridocuprate(I)	Cu3 N5 Sr6	CI	2.0%
K	8.7	Dibarium octafluorotriniccolate decafluorotetraniccolate	Ba2 F18 Ni7	Rb	2.0%
L	8.8	Dibarium octafluorotriniccolate decafluorotetraniccolate	Ba2 F18 Ni7	Cu	1.6%
Μ	11.2	Copper dipotassium dihydrogen phosphatochromate	Cr2 Cu H2 K2 O14 P2	Мо	1.5%
N	2.2	Chromium uranium(V) oxide	Cr O4 U	TI	1.5%
0	6.6	Calcium dibarium bis(hydrogenphosphate(V)) bis(dihydrogenphosphate(V))	Ba2 Ca H6 O16 P4	Ca	1.5%
Р	4.1	Calcium chloride dihydrate Sinjarite	Ca Cl2 H4 O2		
Q	4.9	Caesium niobium phosphate (1/3/3)	Cs Nb3 O15 P3	Br	1.3%
R	6.8	Caesium hydrogen molybdatodiphosphate	Cs H Mo O9 P2	1	1.3%
S	3.2	Barium bistriniobate hydrate	Ba H2 Nb6 O17	Sr	0.8%
Т	1.7	Antimony selenide iodide	I Sb Se	Pb	0.7%
	0.8	Unidentified peak area		Sb	0.6%
				Те	0.6%
Amou	nts calc	ulated by RIR (Reference Intensity Ratio) method		Se	0.4%
				W	0.4%
				Fe	0.3%
				Ν	0.2%(*)
				*LE (sum)	32.9%

Details of identified phases

A: Tris(dibromophosphazene) (1.7 %) Br6 N3 P3 Formula sum 96-100-8091 Entry number Figure-of-Merit (FoM) 0.628316* Total number of peaks 500 Peaks in range 500 156 Peaks matched Intensity scale factor 0.19 Space group Pnma orthorhombic Crystal system a= 6.6300 Å b= 13.3600 Å c= 14.4300 Å Unit cell 3 55 I/Ic

F: Potassium iodate telluric	
	Journal of Solid State Chemistry 104, 193-201 (1993)
Reference	Benhamada L, Grandin A, Borel M M, Leclaire A, Raveau B, "A vanadium(III) phosphate with V~2~O~10~ octahedral units:KV~4~P~7~O~24~",
Calc. density	3.202 g/cm ³
l/lc	a- 10.0040 A b- 10.2009 A C- 10.0200 A C- 112.707 p- 109.220 ° Y- 104.070 ° 1.05
Crystal system	triclinic (anorthic)
Space group	P -1
Intensity scale factor	0.56*
Peaks matched	400 218
Iotal number of peaks	499
Figure-of-Merit (FoM)	0.648409
Entry number	96-100-15 <u>6</u> 5
Formula sum	K O24 P7 V4
phosphatovanadate(III) * (16.8 %)*	
E: Potassium tecto-	
	et A~12~ M~33~ U~9U~(H~2~ U)~12~", Journal of Solid State Chemistry 22, 393-403 (19/7)
Reference	Michel C, Guyomarch A, Raveau B, "Nouveaux echangeurs cationiques avec une structure a tunnelsentrecroises: les oxides A~12~ M~33~ O~90~
Calc. density	4.608 g/cm ³
Meas. density	4.570 g/cm ³
l/lc	4.33
Unit cell	a= 7.4860 Å c= 43.1000 Å
Crystal system	trigonal (hexagonal axes)
Space droup	U.00 R-3 m
Intensity scale factor	02 0.55 [*]
Peaks in range	101 52
Total number of peaks	161
Figure-of-Merit (FoM)	0.614970 [*]
Entry number	96-100-1018
Formula sum	Nb30 O90 Rb12 W3
oxide (12/30/3/90) (4.0 %)*	
D: Rubidium niobium tunasten	
	octahedra in the HTB structure", Journal of Solid State Chemistry 110 , 256-263 (1994)
Reference	Leclaire A, Borel M M, Grandin A, Raveau B, "The phosphoniobate RbNb~2~PO~8~: An ordered sbstitution of PO~4~tetrahedra for NbO~6~
Calc. density	4.109 g/cm ³
l/lc	2.21
Unit cell	a= 13.8150 Å b= 15.8840 Å c= 12.6750 Å
Space group Crystal system	r IIII a orthorhombic
Space group	U.45 Dama
reaks maiched	
Peaks in range	499
Total number of peaks	499
⊢ıgure-ot-Merit (FoM)	0.632002
Entry number	96-100-1623
Formula sum	Nb2 O8 P Rb
phosphatodiniobate (6.3 %) [*]	
C: Rubidium tecto-	
Reference	Fourguet J L, Duroy H, Lacorre P, "Tl2 Nb2 O6+x (0114, 575-584 (1995)
Calc density	17.70 7.660.a/cm ³
Unit cell	a= 10.6418 A
Crystal system	
Space group	Fd-3m
Intensity scale factor	0.22*
Peaks matched	13
Peaks in range	59
Total number of peaks	59
Figure-of-Merit (FoM)	0.611763 [*]
Entry number	96-100-0383
Formula sum	Nb2 Q6 271 TI2
oxide (1 7/0 3/2/6 3) /0 4 %)*	
B: Thallium Thallium/III) nichium	
	474 (1962)
Reference	de Santis P, Giglio E, Ripamonti A, "The crystal structure of trimeric phosphonitrilic bromide.", Journal of Inorganic and Nuclear Chemistry 24, 469-
Calc. density	3.192 g/cm ³

acid (2.2 %)^{*} Formula sum H6 I K O9 Te Entry number 96-100-8207 Figure-of-Merit (FoM) 0.648764* Total number of peaks 499 499 109 Peaks in range Peaks matched Intensity scale factor 0.33* Space group P c 21 n Crystal system orthorhombic a= 14.2200 Å b= 6.6960 Å c= 8.6720 Å 4.76 Unit cell l/lc 3.520 g/cm3 Calc. density Averbuch-Pouchot M. T., "Crystal Chemistry of Some Addition Compounds of Alkali Iodates withTelluric Acid", Journal of Solid State Chemistry 49, 368-378 (1983) Reference G: Potassium barium

phosphate (3.0 %)* Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched

Ba K O4 P 96-100-7162 0.603014^{*} 500 500 61

 Intensity scale factor
 0.33*

 Space group
 P n m a

 Crystal system
 orthorhombic

 Unit cell
 a= 7.7090 Å b= 5.6630 Å c= 9.9720 Å

 I/Ic
 3.41

 Calc. density
 4.140 g/cm³

 Reference
 Masse R, Durif A, "Chemical preparation and crystal structure refinement of K Ba P O~4~monophosphate", Journal of Solid State Chemistry **71**, 574-576 (1987)

H: Niobium thallium oxide hydrate

(33/10.5/88.5/1.5) (4.0 %)* Formula sum H3 Nb33 O90 TI10.5 Entry number 96-100-1006 Figure-of-Merit (FoM) 0.671087 Total number of peaks 161 161 Peaks in range Peaks matched 58 Intensity scale factor 0.59 Space group R -3 m Crystal system trigonal (hexagonal axes) a= 7.5100 Å c= 43.2900 Å Unit cell 4.67 I/Ic Calc. density 5.263 g/cm³ Gasperin M, "Synthese d'une nouvelle famille d'oxydes doubles: A~8~^+ B~22~^5+^O~59~ structure du compose a thallium et niobium", Acta Reference Crystallographica B (24,1968-38,1982) 33, 398-402 (1977)

I: Lead iron vanadium oxide (1/1.75/4.25/11) (2.3 %)^{*}

Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks matched Intensity scale factor Space group Crystal system Unit cell I/Ic Calc. density Reference

J: Hexastrontium trinitridodicuprate(I)

dinitridocuprate(I) (1.1 %) Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell I/Ic Calc. density Reference 0.30^{*} P 63 m c hexagonal a= 5.7420 A c= 13.5070 Å 4.06 6.005 g/cm³ Mentre O, Dhaussy A-C, Abraham F, Steinfink H, "Effect of iron substitution on the structural, electric, and magneticproperties in R-type Pb Fex V6-x O11, a frustrated system", Journal of Solid State Chemistry **130**, 223-233 (1997)

Fe1.75 O11 Pb V4.25

96-100-4124

0.607531

223 223

34

96-100-5040 0.654045^{*} 354 354 37 0.24^{*} P 42 m c tetragonal a= 8.6570 Å c= 7.3340 Å 6.65 4.751 g/cm³ DiSalvo F J, Trail S S, Yamane H, Brese N E, "The crystal structure of Sr6 Cu3 N5 with isolated, bent (Cu(I)2 N3)(7-)anions and the single crystal structural determination of Sr Cu N", Journal of Alloys Compd. **255**, 122-129 (1997)

Communications 65, 185-188 (1988)

K: Dibarium octafluorotriniccolate

decafluorotetraniccolate (8.7 %)*	
Formula sum	Ba2 F18 Ni7
Entry number	96-100-0250
Figure-of-Merit (FoM)	0.634995*
Total number of peaks	500
Peaks in range	500
Peaks matched	163
Intensity scale factor	0.47*
Space group	P -1
Crystal system	triclinic (anorthic)
Unit cell	a= 6.9240 Å b= 7.2180 Å c= 7.4370 Å α= 94.390° β= 93.200 ° γ= 115.820 °
I/Ic	1.67
Calc. density	5.139 g/cm ³
Reference	Renaudin J, Ferey G, Kozak A, Samouel M, Lacorre P, "Crystal and magnetic structures of the ferrimagnet Ba~2~ Ni~7~ F~18~", Solid State

L: Dibarium octafluorotriniccolate

decafluorotetraniccolate (8.8 %) Ba2 F18 Ni7 Formula sum 96-100-0249 Entry number Figure-of-Merit (FoM) 0.606807 Total number of peaks 498 498 Peaks in range Peaks matched 164 Intensity scale factor 0.38 Space group P -1 Crystal system triclinic (anorthic) Unit cell a= 6.9370 Å b= 7.2290 Å c= 7.4560 Å α= 94.370° β= 93.160 ° γ= 115.860 ° 1.35 l/lc Calc. density 5.110 g/cm³ Reference Renaudin J, Ferey G, Kozak A, Samouel M, Lacorre P, "Crystal and magnetic structures of the ferrimagnet Ba~2~ Ni~7~ F~18~", Solid State Communications 65, 185-188 (1988)

M: Copper dipotassium dihydrogen

phosphatochromate (11.2 %) [*]	
Entry number	96-100-7043
Figure-of-Merit (FoM)	0.622859 [*]
Total number of peaks	496
Peaks in range	496 156
Intensity scale factor	0.37*
Space group	P 1 21/c 1
Crystal system	
	a= 9.5590 A b= 7.1960 A C= 8.9830 A β= 93.730 ° 1.05
Calc. density	2.869 g/cm ³
Reference	Coing-Boyat J, Durif A, Guitel J C, "Structure cristalline d'un phosphochromate acide de cuivre potassium:Cu K~2~ H~2~ (P Cr O~7~)~2~", Journal
	of Solid State Chemistry 30 , 329-334 (1979)
N: Chromium uranium(V)	
oxide (2.2 %) [*]	
Formula sum	Cr O4 U
Entry number Figure-of-Merit (FoM)	90-100-8008
Total number of peaks	338
Peaks in range	338
Peaks matched	
Space droup	0.89 Phon
Crystal system	orthorhombic
Unit cell	a= 4.8710 Å b= 11.7870 Å c= 5.0530 Å
l/Ic Calc density	12.96 8 105 a/cm ³
Reference	Bacmann M, Bertaut E F, "Structure de U Cr O~4~", Bulletin de la Societe Francaise de Mineralogie et de Cristallographie(72,1949-100,1977) 87,
	275-276 (1964)
O: Calcium dibarium	
bis(hvdrogenphosphate(V))	
bis(dihydrogenphosphate(V)) (6.6	%) [*]
Formula sum	Ba2 Ca H6 O16 P4
Entry number Figure-of-Merit (FoM)	96-100-0441
Total number of peaks	499
Peaks in range	499
Peaks matched	167
Space group	0.25 P 1.21/a 1
Crystal system	monoclinic
Unit cell	a= 12.3872 Å b= 10.2046 Å c= 5.4946 Å β= 100.767 °
l/lc Cala density	1.21 2.205 g/cm ³
Reference	Tourni M., Chabchoub S., Smiri-Dogguy L., Laligant Y., "Ab-initio powder structure determination of CaBa~2~(HPO~4~)~2~(H~2~PO~4~)~2~:a
	new phosphate with a M(T\F~4~)~4~ chain structure", European Journal of Solid State and Inorganic Chemistry 34, 1249-1257 (1997)
<i>P: Calcium chloride dihydrate</i>	
Sinjarite (4.1 %) Formula sum	Ca Cl2 H4 O2
Entry number	96-100-1836
Figure-of-Merit (FoM)	0.600748 [*]
Total number of peaks	500
Peaks matched	67
Intensity scale factor	0.22*
Space group	Pbcn
Crystal system Unit cell	οποσποσρία a= 5 8930 Å b= 7 4690 Å c= 12 0700 Å
l/lc	1.72
Meas. density	1.860 g/cm ³
Calc. density Reference	1.838 g/cm² Leclaire A Borel M M "Le dichlorure de calcium dibydrate" Acta Crystallographica. Section B 33 , 1608-1610 (1977)
Kelefenee	
Q: Caesium niobium phosphate	
(1/3/3) (4.9 %)*	
Formula sum Entry number	Cs ND3 O15 P3 96-100-1451
Figure-of-Merit (FoM)	0.622090 [*]
Total number of peaks	499
Peaks in range	499
Peaks matched Intensity scale factor	100 0.25 [*]
Space group	Pnnm
Crystal system	orthorhombic
Unit cell	a= 13.4454 A b= 14.8114 A c= 6.4422 A
Calc. density	3.854 g/cm ³
Reference	Borel M M, Grandin A, Costentin G, Leclaire A, Raveau B, "A new series of bronzes and bronzoids with KNb~3~P~3~O~15~ structure", Materials
	Research Bulletin 25 , 1155-1160 (1990)
R: Caesium hvdrogen	
R: Caesium hydrogen molybdatodiphosphate (6.8 %) [*]	
<i>R: Caesium hydrogen</i> <i>molybdatodiphosphate (6.8 %)</i> [*] Formula sum	Cs H Mo O9 P2
R: Caesium hydrogen molybdatodiphosphate (6.8 %) [*] Formula sum Entry number Figure-of-Morit (ForM)	Cs H Mo O9 P2 96-100-8437
<i>R: Caesium hydrogen</i> <i>molybdatodiphosphate (6.8 %)</i> * Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks	Cs H Mo O9 P2 96-100-8437 0.604266 [*] 498
R: Caesium hydrogen molybdatodiphosphate (6.8 %) [*] Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range	Cs H Mo O9 P2 96-100-8437 0.604266 [*] 498 498
R: Caesium hydrogen molybdatodiphosphate (6.8 %) [*] Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched	Cs H Mo O9 P2 96-100-8437 0.604266* 498 498 161
R: Caesium hydrogen molybdatodiphosphate (6.8 %) [*] Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Spage group	Cs H Mo O9 P2 96-100-8437 0.604266 [*] 498 498 161 0.44 [*] B.1.21(c,1)
<i>R: Caesium hydrogen</i> <i>molybdatodiphosphate (6.8 %)</i> * Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crvstal system	Cs H Mo O9 P2 96-100-8437 0.604266 [*] 498 498 161 0.44 [*] P 1 21/a 1 monoclinic

l/lc	2.01
Calc. density	3.410 g/cm ³
Reference	Averbuch-Pouchot M T, "Synthesis and Crystal Structure of Cs H Mo O~2~ (P~2~ O~7~)", Journal of Solid State Chemistry 79, 296-299 (1989)
S: Barium bistriniobate	
hydrate (3.2 %) [*]	
Formula sum	Ba H2 Nb6 O17
Entry number	96-100-1384
Figure-of-Merit (FoM)	0.624916
lotal number of peaks	323
Peaks matched	59
Intensity scale factor	n 39 [*]
Space group	Immm
Crystal system	orthorhombic
Unit cell	a= 8.6200 Å b= 21.6100 Å c= 3.8110 Å
l/lc	3.77
Calc. density	4.522 g/cm ³
Reierence	(H \sim 2~ 0): A novel lamellar hiodate , Materials Research Bulletin 23, 495-500 (1988)
T: Antimony selenide	
iodide (1.7 %) [*]	
Formula sum	I Sb Se
Entry number	96-100-8205
Figure-of-Merit (FoM)	0.645469
Total number of peaks	494
Peaks in range	494
Intensity scale factor	49
Space group	U41 Poma
Crystal system	orthorhombic
Unit cell	a= 8.6980 Å b= 4.1270 Å c= 10.4120 Å
l/lc	7.57
Calc. density	5.822 g/cm ³
Reference	Ibanez A, Jumas J C, Olivier-Fourcade J, Philippot E, Maurin M, "Sur les Chalcogeno-iodures d'antimoine SbXI (X=S,Se,Te):Structures

5.822 g/cm³ Ibanez A, Jumas J C, Olivier-Fourcade J, Philippot E, Maurin M, "Sur les Chalcogeno-iodures d'antimoine SbXI (X=S,Se,Te):Structures etspectroscopie Moessbauer de ^121^Sb", Journal of Solid State Chemistry **48**, 272-283 (1983)

(*) 2theta values have been shifted internally for the calculation of the amounts, the intensity scaling factors as well as the figure-of-merit (FoM), due to the active search-match option 'Automatic zero point adaption'.

Search-Match

Settings

Reference database used	COD-Inorg 2023.06.06
Automatic zeropoint adaptation	Yes
Downgrade entries with low scaling factors	sYes
Minimum figure-of-merit (FoM)	0.60
2theta window for peak corr.	0.30 deg.
Minimum rel. int. for peak corr.	0
Parameter/influence 2theta	0.50
Parameter/influence intensities	0.50
Parameter multiple/single phase(s)	0.50

Peak List

No.	2theta [º]	d [Å]	l/l0 (peak height)	Counts (peak area)	FWHM	Matched
1	9.06	9.7530	20.61	14.68	0.1600	A,C,M,Q
2	15.84	5.5904	15.00	5.34	0.0800	A,C,D,F,H,J,M,R,S
3	18.02	4.9187	315.37	112.34	0.0800	A,C,E,F,G,I,K,M,Q
4	18.82	4.7114	12.03	14.99	0.2800	C,E,I,K,L,M,O,R
5	20.78	4.2712	140.30	99.95	0.1600	A.C.E.F.J.O.P.Q.R.S
6	22.96	3.8703	27.18	19.37	0.1600	A.C.E.F.G.J.N.O.Q.S.T
7	26.60	3.3484	1000.00	534.30	0.1200	A,C,D,E,F,G,H,I,J,K,L,M,N,O,Q,R,S,T
8	27.86	3.1998	58.17	20.72	0.0800	A,B,C,D,E,F,G,H,K,L,M,O,P,Q,T
9	29.34	3.0416	217.15	154.69	0.1600	A,B,C,D,E,F,G,H,J,K,L,M,N,O,P,Q,R,T
10	30.00	2.9762	14.84	7.93	0.1200	A.C.D.F.H.K.L.O.Q.R.T
11	30.86	2.8952	35.37	31.49	0.2000	A.C.D.E.F.H.I.J.M.O.Q.R.S.T
12	32.08	2.7878	73.50	78.54	0.2400	C.D.E.H.I.J.K.L.M.O.P.Q.R.T
13	32.50	2.7527	81.83	58.30	0.1600	A.E.F.J.K.L.M.O.P.Q.R.S
14	33.74	2.6544	21.94	7.81	0.0800	A.B.C.E.F.I.J.K.L.M.O.P.Q.R.S.T
15	34.26	2.6153	59.69	42.52	0.1600	A,C,E,F,H,M,N,O,Q,R,T
16	36.50	2.4597	101.11	36.02	0.0800	A,B,C,D,E,F,G,H,I,K,L,M,O,Q,R
17	38.64	2.3283	11.93	6.38	0.1200	A,C,D,E,F,G,H,I,K,L,M,N,O,P,Q,R,S,T
18	39.38	2.2862	103.83	73.97	0.1600	A,C,D,E,F,G,H,J,K,L,M,O,P,Q,R,S
19	40.24	2.2393	23.52	20.95	0.2000	A,C,D,E,F,G,H,I,K,L,M,N,O,P,Q,R,S,T
20	41.16	2.1914	49.63	53.03	0.2400	A,C,E,F,G,I,J,K,L,N,O,P,Q,R
21	42.38	2.1311	14.71	5.24	0.0800	A,C,D,E,F,G,H,J,K,L,M,N,O,P,Q,R,S,T
22	43.08	2.0980	17.30	12.32	0.1600	A,C,E,F,G,H,J,K,L,M,N,O,P,Q,R,S
23	45.70	1.9837	21.15	7.53	0.0800	A,C,E,F,H,K,L,M,O,P,Q,R,T
24	47.44	1.9149	59.30	52.81	0.2000	A,C,D,E,F,G,H,K,L,M,N,O,P,Q,R,S,T
25	48.46	1.8769	22.54	20.07	0.2000	A,B,C,D,E,G,H,I,J,K,L,M,N,O,P,Q,R,S,T
26	50.10	1.8193	121.96	65.16	0.1200	A,C,D,E,F,G,H,I,J,K,L,M,O,P,Q,R,S,T
27	51.62	1.7692	35.89	12.78	0.0800	A,B,C,D,E,F,G,H,I,K,L,M,N,O,P,Q,R
28	54.78	1.6744	70.19	25.00	0.0800	A,B,C,D,E,F,G,H,I,K,L,M,N,O,P,Q,R,S,T
29	55.26	1.6610	20.49	10.95	0.1200	A,C,D,E,F,G,H,I,J,K,L,M,O,P,Q,R,S,T
30	56.34	1.6317	29.94	21.33	0.1600	A,C,D,E,F,G,H,K,L,M,N,O,P,Q,R,S
31	57.30	1.6066	14.59	10.39	0.1600/	A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T
32	59.88	1.5434	131.88	70.46	0.1200	A,C,E,F,I,J,K,L,M,O,P,Q,R,S,T
33	60.06	1.5392	54.05	28.88	0.1200	A,B,C,E,F,H,J,K,L,M,N,O,Q,R
34	60.56	1.5277	10.25	7.30	0.1600	A,C,D,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T
35	62.12	1.4930	17.02	15.16	0.2000	A,B,C,D,F,H,I,K,L,M,N,O,P,Q,R,S,T
36	67.66	1.3836	50.41	17.95	0.0800	A,B,D,F,G,H,K,L,M,O,P,Q,R,S,T
37	67.84	1.3804	25.39	13.57	0.1200	A,D,F,G,H,I,J,K,L,M,O,P,R,S,T
38	68.06	1.3765	35.65	19.05	0.1200	A,G,J,K,L,M,N,P,Q,R
39	68.24	1.3733	25.63	13.69	0.1200	A,D,F,G,H,I,J,K,L,M,N,O,P,Q,R,T
40	75.56	1.2574	38.89	20.78	0.1200	A,D,F,G,I,J,K,L,M,N,O,P,Q,R,S,T
41	75.78	1.2543	17.01	6.06	0.0800	A,B,F,G,H,J,K,L,M,N,O,Q,R,S
42	77.58	1.2296	16.28	5.80	0.0800	A,B,F,G,I,J,K,L,M,N,O,Q,R,S,T
43	79.80	1.2009	35.04	18.72	0.1200	A,F,G,J,K,L,M,O,P,Q,S,T

44	80.02	1.1981	18.69	13.31	0.1600	A,F,G,I,J,K,L,M,N,O,P,Q,S,T
45	81.08	1.1851	27.36	9.75	0.0800	A,F,G,I,J,K,L,M,O,P,Q,S,T
46	81.36	1.1817	38.18	20.40	0.1200	A,I,J,K,L,M,N,O,P,Q,S,T
47	81.62	1.1786	14.89	10.61	0.1600	A,F,I,J,K,L,M,N,O,P,Q,T
48	83.72	1.1543	11.92	6.37	0.1200	A,F,I,J,K,L,M,N,O,P,Q,S,T

Integrated Profile Areas

Based on calculated profile

Profile area	Counts	Amount
Overall diffraction profile	580789	100.00%
Background radiation	415256	71.50%
Diffraction peaks	165533	28.50%
Peak area belonging to selected phases	160983	27.72%
Peak area of phase A (Tris(dibromophosphazene))	5549	0.96%
Peak area of phase B (Thallium Thallium(III) niobium oxide (1.7/0.3/2/6.3))	1229	0.21%
Peak area of phase C (Rubidium tecto-phosphatodiniobate)	10972	1.89%
Peak area of phase D (Rubidium niobium tungsten oxide (12/30/3/90))	10489	1.81%
Peak area of phase E (Potassium tecto-phosphatovanadate(III) *)	10082	1.74%
Peak area of phase F (Potassium iodate telluric acid)	4681	0.81%
Peak area of phase G (Potassium barium phosphate)	5431	0.94%
Peak area of phase H (Niobium thallium oxide hydrate (33/10.5/88.5/1.5))	8878	1.53%
Peak area of phase I (Lead iron vanadium oxide (1/1.75/4.25/11))	5873	1.01%
Peak area of phase J (Hexastrontium trinitridodicuprate(I) dinitridocuprate(I))	1894	0.33%
Peak area of phase K (Dibarium octafluorotriniccolate decafluorotetraniccolate)	13290	2.29%
Peak area of phase L (Dibarium octafluorotriniccolate decafluorotetraniccolate)	14931	2.57%
Peak area of phase M (Copper dipotassium dihydrogen phosphatochromate)	12011	2.07%
Peak area of phase N (Chromium uranium(V) oxide)	7427	1.28%
Peak area of phase O (Calcium dibarium bis(hydrogenphosphate(V)) bis(dihydrogenphosphate(V)))	10905	1.88%
Peak area of phase P (Calcium chloride dihydrate Sinjarite)	4014	0.69%
Peak area of phase Q (Caesium niobium phosphate (1/3/3))	8469	1.46%
Peak area of phase R (Caesium hydrogen molybdatodiphosphate)	13799	2.38%
Peak area of phase S (Barium bistriniobate hydrate)	6279	1.08%
Peak area of phase T (Antimony selenide iodide)	4779	0.82%
Unidentified peak area	4550	0.78%

Diffraction Pattern Graphics

Match! Copyright © 2003-2023 CRYSTAL IMPACT, Bonn, Germany

Amounts of Phases and Elements (Weight %)

Phase composition:

Potassium tecto-phosphatovanadate(III) * (15.8%), Copper dipotassium dihydrogen phosphatochromate (11.2%), Dibarium octafluorotriniccolate decafluorotetraniccolate (8.8%), Dibarium octafluorotriniccolate decafluorotetraniccolate (8.7%), Caesium hydrogen molybdatodiphosphate (6.8%), Calcium dibarium bis(hydrogenphosphate(V)) bis(dihydrogenphosphate(V)) (6.6%), Rubidium tecto-phosphatodiniobate (6.3%), Caesium niobium phosphate (1/3/3) (4.9%), Calcium chloride dihydrate Sinjarite (4.1%), Rubidium niobium tungsten oxide (12/30/3/90) (4.0%), Niobium thallium oxide hydrate (13/10.5/88.5/1.5) (4.0%), Barium bistninobate hydrate (3.2%), Potassium barium phosphate (3.0%), Lead iron vanadium oxide (1/1.75/4.25/11) (2.3%), Potassium iodate telluric acid (2.2%), Chromium uranium(V) oxide (2.2%), Antimony selenide iodide (1.7%), Tris(dibromophosphazene) (1.7%), Hexastrontium trinitidodicuprate(I) dinitridocuprate(I) (1.1%), Thallium Thallium(III) niobium oxide (1.7/0.3/2/6.3) (0.4%)

Elemental composition:

O (26.57%), Nb (10.26%), P (9.42%), Ba (9.25%), Ni (7.01%), F (5.83%), V (4.79%), K (3.04%), Cs (2.95%), Cr (2.50%), CI (1.96%), Rb (1.96%), Cu (1.61%), Ma (1.51%), TI (1.50%), Ca (1.49%), U (1.45%), Br (1.30%), I (1.29%), Sr (0.75%), Pb (0.69%), Sb (0.64%), Te (0.62%), Se (0.41%), W (0.38%), Fe (0.33%), H (0.26%), N (0.21%) (LE: 32.88%)

Match! Phase Analysis Report

Sample: Sample_H

Sample Data File name File path

Data collected Data range Original data range Number of points Step size Rietveld refinement converged Alpha2 subtracted Background subtr. Data smoothed 2theta correction Radiation Wavelength Sample_H.raw G:/.shortcut-targets-by-id/16KIMvpSIqVAUHFFggq9IVgYQzQybBTlu/Marwan - research/Concrete Mix Master Thesis/X-Ray/Birzeit University_XRD_Raw data Jul 13, 2023 12:11:51 4.900° - 89.900° 5.000° - 90.000° 4251 0.020 No No No No No -0.1° X-rays 1.540598 Å

> AI (3.7%) K (4.0%)

> > Na (4.4%

Ni (5.1%)

Ba (5.5%)/

Analysis Results

Phase composition (Weight %)

0 (15.1%)

ND (5.6%)

Elemental composition (Weight %)

Index	Amour	tName	Formula sum	Element	Amount (weight %)
ABCOMEGI-	(%) 1.0 1.2 10.1 17.5 5.0 2.7 8.1 3.4 5.3	Thallium Thallium(III) niobium oxide (1.4/0.6/2/6.6) Tetraamminepalladium chromate Sodium calcium pentafluoroaluminate fluoride - \$-beta Sodium calcium hexafluoroaluminate fluoride - \$-beta Rubidium niobium tungsten oxide (12/30/3/90) Rubidium niobium cyclo-trigemanate Potassium tecto-divanadato(III)tetraphosphate Potassium nitrate - \g Niobium thallium oxide hydrate (33/10.5/88.5/1.5)	Nb2 O6.648 T12 Cr H12 N4 O4 Pd Al Ca F6 Na Al Ca F6 Na Nb30 O90 Rb12 W3 Ge3 Nb O9 Rb K6 O16 P4 V2 K N O3 H3 Nb33 O90 T110.5		75, 7%(1) 5,8% 5,5% 5,1% 4,0% 3,7% 3,8%
ŝ	6.8	Magnesium coball diphosphate (1.1/0.9/1)	Co0.92 Mg1.08 O7 P2	TI	2.8%
M	0.3	Iron vahabium moljodenum oxide (4/1 98.0.02/20) Europium strontium copper oxide (1 3/1 7/2/5 65)	Eve Euro 3 02 020 VI 39 Cu2 Euro 3 05 65 Srt.1	Mn	1.9%
O.P	4.6	Disodium tribarium tetrachromium fluoride Disodium manganese chromium fluoride	Ba3 Cr4 F20 Na2 Cr F7 Mn Na2	ta.	1.4%
R	-	Dibarium octaliluorotmiccolate decalluorotetraniccolate Dibarium octafluorotniniccolate decalluorotetraniccolate	Ba2 F18 NI7	La Fe Rb	1.3%
Ť	2.0 0.9	Barlum tantalum oxide (5.5/21.8/60) Unidentified peak area	Ba5.5 O60 Ta21.8	Go	1.1%
Amour	nts calc	ulated by RIR (Reference Intensity Ratio) method		N PE STE	0.7%(*) 0.7% 0.5% 0.3%

LE (sum)

Details of identified phases

A: Thallium Thallium(III) niobium oxide (1.4/

oxide (1.4/0.6/2/6.6) (1.0 %) ⁴ Formula sum Entry number Figure-of-Merit (FoM)	Nb2 O6.648 TM 96-100-0367 0.607904
Total number of peaks	52
Peaks in range	52
Peaks matched	14
Intensity scale factor	0.67
Space group	F a -3 m
Crystal system	cubic
Unit cell	a= 10.6313 Å
Vic	18.15
Calc. density	7.749 g/am ²
Reference	Fourquet J L, Duroy H, Lacone P, "Tiz Nb2 O6+x (0114, 575-564 (1995)

Cr 1112 N4 O4 Pd

96-100-0345

0.613547

141/amd

tetragonal

2.357 g/cm²

AI Ca F6 Na

96-100-0418

a= 7 3177 A == 15 2890 A

Inorganic Chemistry 30, 681-688 (1993)

215 215

40

6.25

5.68

B: Tetraamminepalladium

chromate (1.2 %) Formula sum Entry number Figure-of-Meril (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell. MC. Calc. density Reference

C: Sodium calcium pentafluoroaluminate fluoride - 5-Deta (10.1 %) Formula sum Entry number Figure-of-Ment (FoM) Total number of peaks. Peaks in range **Peaks** matched Intensity scale factor Space group Crystal system Unit cell Mc.

0.620159 189 189 31 0.54 P321 Irigonal (hexagonal axes) a= 8.9295 Å c= 5.0642 Å 1.50 2.880 g/cm² 2.906 g/cm² Memon A. Courbion G, "The Na F - Ca F2 - Al F1 system: structures of S-bela- Na Ca Al F6 and Na4 Ca4 Al7 F33", Journal of Solid State Chemistry 84, 153-164 (1990)

Laligant Y, "On the first pailadium chromate, crystal structure of PdtNN-3+++++(CnO+4+7, European Journal of Solid State

D: Sodium calcium

Meas. densily

Calc. density

Reference

Formula sum	AI Ca F6 Ne
Entry number Figure-of-Ment (FoM)	96-100-0150 0.634281
Total number of peaks Peaks in range	499 499
Peaks matched	205
Intensity scale factor	0.44
Space group	P / 21/c 1
Unit cell	a= 5.7423 A b= 5.1927 A c= 20.3514 A B= 51.499 "
lic	0.70
Galo, density	2.934 g/cm ²
Heletence	data", European Journal of Solid State and Inorganic Chemistry 35(3), 265-272 (1988)

E: Rubidium niobium tungsten oxide (12/30/3/90) (5.0 %) Formula sum Entry number Figure-of-Ment (FoM)

Nb30 000 Rb12 W3 96-100-1018 0.674643

Total number of peaks Preaks in range Preaks matched intensity scale factor Space group Crystal system Unit cell I/Ic Meas: density Calc, density Reference 161 161 77 0.78[°] R -3 m trigonal (hexagunal axes) 2= 7.4860 Å c= 43 1000 Å 4.33 4.570 g/cm^o 4.608 g/cm^o Michael C, Guyomarch A, Raveau B, "Nouveaux echangeurs calioniques avec une structure a lunnelsentrecroises" les oxides: A=12- M=33- D=90- et A=12- M=35- Q=90-(H=2- O)=12-° Journal of Solid State Chemistry 22, 393-403 (1977)

F Rubidium niobium cyclo-

trigermanate (2.7 %) Ge3 Nb O9 Rtk Formula sum 96-100-1077 Entry number Figure-of-Ment (FoM) 0.620987 Total number of peaks 202 202 Peaks in range Peaks matched 31 0.41 Intensity scale factor Space group P-8c2 Crystal system inexagonal Unit cell ≈ 7.0380 A == 10.1320 A Ŵс 4.31 Calc. density 4 127 g/cm² Reference Choisnet J, Descharvins A, Raveau B; "Sur de nouveaux garmanates et siticales de type benitoite", Journal of Solid Stati-Chemistry 4, 209-218 (1972)

G. Polassium lecto-

divariadato(III)tetraphosphate (8.1 %). K6 016 P4 V2 Formula sum Entry number 96-100-1478 Figure-of-Ment (FoM) 0.600836 Total number of peaks. 500 500 Peaks in range **Peaks** matched 211 Intensity scale factor 0.31 Space group B 1/21/01 Crystal system monoclinic Unit cell a= 9.5780 A tr= 11.0970 A c= 18.1270 A 6= 121.670 * Mc 1.07 Calc. density 2.901 g/cm1 Reference Benhamada L, Grandin A, Borel M M, Leclaire A, Raveau B, "A new vanadium III potassium phosphate with a cage structure.K~6~V-2~P~4~O~16~, Journal of Solid State Chemistry 91, 264-270 (1991)

H: Potasium nitrate - \g (3.4 %)

Formula sum K N D3 Entry number 96-100-0052 Figure-of-Ment (Fold) 0.636285 Total number of peaks 76 Peaks in range 76 Peaks matched 17 Intensity scale factor 0.33Space group RJm Crystal system Ingonal (hexagonal axes) a= 5.4870 A c= 9.1560 A Unit cell 2.74 Me Calc. density 2 109 g/cm² Nimmo J. K., Lucas B. W., "The crystal structures of Ig- and Ib-KNO-3- and thela Weltarrow Ig Weltarrow Ib please Reference transformations* Acta Crystallographica B (24,1968-38,1982) 32(7) 1968-1971 (1976)

I: Niobium thallium oxide hydrate

(33/10.5/88.5/1.5) (5.3 %) H3 N633 090 THO 5 Formula sum 96-100-1006 Entry number Figure-of-Meril (FoM) 0714966 Total number of peaks 181 Peaks In range 161 **Peaks** malched 82 Intensity scale factor 0.69 Space group R-3m Crystal system trigonal (hexagonal axes) Unit cell a= 7.5100 A c= 13 2900 A 4.67 Mc Calc. density 5.263 u/cm² Gasperin M. *Synthese d'une nouvelle famille d'orydes doubles: A-8-*** B-22-*5**O-59- structure du compose a thallium es Reference hiobium", Acta Crystallographica B (24,1968-38,1982) 33, 398-402 (1977)

J: Magnesium cobalt diphosphate

1.1/0.3/1) (0.0 34)		
formula sum	Co0.92 Mg1.08 D7 P2	
Entry number	96-100-1466	
figure-of-Merit (FoM)	0.684858	
fotal number of poaks	499	
heaks in range	499	
eaks matched	129	
ntensity scale factor	0.45	
Space group	P-121/c1	
Trystal system	monoclinic	
Juli call	≈ 6.9770 Å b= 6.3300 Å c= 9.0320 Å β= 113.740 °	
/Ic	1:44	
Taic density	3.516 g/om ²	
telerence	Riou D. Leclaim A. Raveau B., "Structure of a coball milightonium diphosphate: (Mg-x-Co-1-x-y-2+O-7-*, Acta Crystallographica C (39, 1983-) 47, 1583-1585 (1991)	
Peaks matched ntensity scale factor Space group Trystal system Juit cell Jic Calc. density Reference	129 0.45 ¹ P 1 21/c 1 monoclinic ≈ 6.9770 Å b= 6.3300 Å c= 9.0320 Å β= 113.740 ° 1.44 3.516 g/cm ² Riou D. Leclaim Å. Raveau B. "Structure of a coball magnosium dip/iosphate: (Mg-x-Co-1-x-y-2-Q-7-* Grystallographica C (39.1983-) 47_1583-1586 (1991)	Acta

K: Lanthanum palladium oxide

(4/1/7) (1.9 %) Formula sum Entry number Figure-of-Merrt (FoM) Total number of peaks Peaks in range Crystal system Unit cell Vic Calc, density Reference

96-100-0485 0.679104 307 307 73 0.41 C 1 2/m 1 monoclinic $a= 13.4690 \text{ Å} b= 4.0262 \text{ Å} c= 9.4480 \text{ Å} B= 133.420 \text{ }^{\circ}$ 6.05 6.907 g/cm² Attfield J F. Funey G. "Structural correlations within the lanthanum paladium oxide family", Journal of Solid State Chemistry **80**. 286-298 (1989)

L: Iron vanadium molybdenum

oxide (4/1.98/3.02/20) (5.5 %) Formula sum Entry number Figure-of-Merrt (FoM) Total number of pitaks Peaks in range Pitaks matched Intensity scale factor Space group Crystal system Unit cell I/Ic Calc. density Reference

Fe4 Mo3.02 O20 V1.98 96-100-0124 0 703950 482 462 156 0.56 P 41 2 2 Initragonal a= 9.5390 Å c= 17.1411 Å 2.68 3.977 g/cm² Laligant V. Permer J. L. # Bai

Laå OZ Pa

Laligant Y, Permer L, Le Ban A, "Crystal souccure of Fe4 V2 Mo3 O20 determined from conventional X-raypowder diffraction data" European Journal of Solid State Inorganic Chemistry 32, 325-334 (1995)

Ln-2-x- Sr-1+x- Cg-2- Q-6-x/2- (Ln = Sm, Eu, Gd)", Materialis Research Bulletin 17, 567-573 (1982)

M: Europium strontium copper

oxide (1.3/1.7/2/5.65) (0.9 %) Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Puaks matched Intensity scale factor Space group Crystal system Unit cell I/Ic Colc. density Reference Gu2 Eu1 3 05 66 SH17 96-100-1158 0.623956 322 322 322 110 0.15 I m m orthorhombic a= 3.7440 Å b= 11 3870 Å c= 20.0470 Å 4.63 6.604 g/cm² Nguyen N. Choisnet J. Raveau B, "Intercroissances des structures de type Perovskite et Sr Q deflattairesen oxygene. les origines

N: Dithallium distrontium copper

oxide (0.9 %) Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system

Cu O6 Sr2 Ti2 96-100-1523 0.606477 144 144 28 0.43 1 4/m m m 18tragonal Unil cell I/Ic Calc density Reference

O: Disodium tribarium

tetrachromium fluoride (4.6 %) Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell I/Ic Meas. density Calc. density Reference

P: Disodium manganese

chromium fluoride (6.8 %) Formula sum Entry number Figure-of-Ment (FoM) Total number of poaks Peaks in range Praks matched Intensity scale factor Space group Crystal system Unit cell I/Ic Calc. donsity Reference

Q: Dibarium octatiuorotriniccolate

decafluorotetraniccolale (7.2 %)*

necation of the lite lite with	
Formula sum	Ba2 F18 N/7
Entry number	96-100-0249
Figure-of-Merit (FoM)	0.633072
Total number of peaks	498
Peaks in range	495
Peaks matched	213
Intensity scale factor	0.35
Space droup	P-1
Crystal system	triclinic (anorthic)
Unit pall	≥= 6.9370 Å b= 7.2290 Å c= 7.4560 Å d= 94.370° β= 95.160 ° v= 115.660 °
1/Ic	1.35
Calc. density	5.110 g/cm*
Reference	Renaudin J, Ferrey G, Kozak A, Samouel M, Lacomr P, "Crystal and magnetic structures of the ferrimagnet Ea-2- M-T- P-IE Solid State Communications 65, 185-188 (1988)

a= 6.9240 Å b= 7.2180 Å c= 7.4370 Å c= 94.390° B= 53.200 ° v= 115.620 °

R: Dibanum octafluorotriniccolate

decafluorotetraniccolare (5.7 %) Formula sum Entry number Figure-of-Ment (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell V/c Calc. density Reference

5: Calcium ferrate manganate (1.3 %)* Formula sum Entry numbur

a+ 3.1464 Å c= 22.3013 Å 13.06 7.889 g/cm² Martin C, Maignan Å, Huve M, k

Martin C. Maignan A, Huve M, Michel C, Hervieu M, Raveau B, "The influence of alkaline-earth ions on the properties of the 2201"superconductive cuprates, the solid solution TI-2-Ba-2-x-Sr-x-CuO-6+d-*, European Journal of Solid State Inerganic Chemistry 30, 7-18 (1993)

Ba3 Cr4 F20 Na2 96-100-0339 0.602497^{*} 496 496 210 0.24^{*} P 1 21/n 1 monoclinic a= 7.2620 A t= 20.6680 A c= 5.4310 A β= 90.760 * 1.47 4.260 g/cm² 4.261 g/cm² A0jean P, Leblanc M, De Pape R: Forey IS: "Structure of Na+2~ Ba+3~ Ci~4~ E+20-7, Acta Crystallographica C (89.1983.) 11, 1696-1698 (1985)

Cr F7 Mn Na2 96-100-0296 0.639615' 288 81 0.53' F 31 2 1 trigonal (hexagunal axes) a= 7.4210 A C= 18 1660 A 2.21 3.287 g/cm² Coursion G. Ferey G. Holler H. Babel D. "On trigonal weborites: structure refinement of Na-2-MnCrF+7~ andNa-2-MnGaF+7-" European Journal of Solid State Inorganic Chemistry **25**, 435-447 (1988)

1.67 5.139 g/orn⁴ Renaudin J, Ferrey G, Kozak A, Samouel M, Lacomi F, "Crystal and magnetic structures of the ferrimagnet Ea-2- M-7- F-12- , Solid State Communications 65, 185-186 (1988)

Ca3 Mn3 O8.02 96-100-0195

Ba2 F18 N/7

96-100-0250

Inclinic (anorthic)

0.637845

500

500

213

0.34

P-t

Figure-of-Merit (FoM)	0.632109
Total number of peaks	432
Peaks in range	432
Peaks matched	62
intensity scale factor	0.15
Space group	Pm2a
Crystal system	eithorhombic
Unit cell	≥ 5.3320 Å b= 11.1300 Å ≥ 5.4560 Å
/Ic	3.28
Calc density	4.237 g/cm ²
Référence	Nguyen N, Calage Y, Varret F, Ferey G, Calgmoort V, Herviou M, Raveau B, "The oxygen defect Porovskite Ca+3+ Mh+1.35+ Fe+1.65+ D+8.02+, a highlyfrustrated antiferromagnet", Journal of Solid State Chemistry 53, 398-405 (1984)
D Barlium tantalum ovina	

1: Barluin tantalum oxion

Formula sum	Ba5 5 O60 Ta21 6
Entry number	96-100-1161
Figure-of-Meril (FoM)	0.623363
Total number of poaks	254
Peaks in range	264
Peaks matched	108
Intensity scale factor	0.32
Space group	PA
Crystal system	tetragonal
Unit cell	a= 17.6000 Å c= 3.9050 Å
VIC	4.51
Meas density	7.550 g/cmi
Calc. density	7.789 g/om*
Reference	Gaspern M. "Structure costalline du bronze de lungstene. Ba O (Ta-2- O-5-)-2-" Bulletin de la Societo Francaise de Minoralogie et de Cristallographie(72,1949-100,1977) 90. 172-175 (1967)

¹¹2theta values have been shifted internally for the calculation of the amounts, the intensity scaling factors as well as the figure-of-ment (FoM), due to the active search-match option "Automatic zero coint adaption".

Search-Match

Settings

Reference database used	COD-morg 2023.06.0
Automatic peropoint adaptation	Yes
Downgrade entries with low scaling tai	ctorsYes
Minimum figure-of-ment (FpM)	0.60
2theta window for peak corr.	0.30 deg.
Minimum rel int for peak com	0
Parameter/influence 2thela	0.50
Parameter/influence intensities	0.50
Parameter multiple/single phase(s)	0.50

Peak List

No.	2theta [7]	d [A]	1/10 (peak height)	Counts (peak area)	FWHM	Matched
1.11	20.80	4.2671	367.86	113.98	0.1200	B.C.G.H.L.O.T
2	23.02	3.8604	57.93	23 93	0.7600	B.C.F.G.J.L.S.T
3	24.54	3.6539	12.95	2.68	0.0800	8.D.E.GILMNO.P.R
4	24.64	3.5815	30.41	18.64	0.2400	E.G.I.L.M.O.Q.R.S.T
5	26.62	3 3459	1000.001	913.16	0.1600	C.D.E.F.G.I.K.L.M.N.O.Q.R
Б	27.04	3.2949	40.99	21.17	0.2000	BDEGHLMOQRT
1	29.36	3.0396	623.48	386.36	0.2400	A.D.E.F.G.H.I.J.K.L.P.Q.R.S.T
8	30.38	2 9398	14.57	6.02	0.7600	C.E.G.I.J.K.R.T
19	30.88	2.8934	98.20	59.62	0.2400	DEFGIRLMNOPT
10	32.14	2.7828	31.83	9.86	0.1200	D.E.G.I.J.L.M.N.O.Q.R.S.T
11	32.68	2,7380	51.11	58.07	0.4400	B.D.G.H.L.M.O.P.S.T
12	33.82	2.6483	45.53	42.32	0.3600	A.B.D.G.J.L.M.N.O.Q.R.S
13	35.94	2.4968	77.07	31.84	0.1600	DEGIKMOQRST
14	36.52	2.4584	73.88	22.89	0.1200	D.E.G.I.J.K.L.M.O.Q.R.S.T
15	39.40	2:2851	201 52	62.44	0.1200	B.C.D.E.G.H.I.J.K.L.M.O.O.R
18	40.24	2,2393	63.30	26:15	0.1600	BCDEFGIJKLMNOPORST
17	41.08	2,1955	33.48	17.29	0.2000	B.C.D.G.J.K.L.M.O.P.Q.R.S.T
18	42.42	2.1291	82.81	17.11	0.0800	BCDEGIJKLMOPORT
19	43.0B	2.0980	154.76	47.95	0.1200	SDFGHIJKLMOPORT
20	43.90	2 0607	35.71	25.82	0.2800	D.E.F.G.H.I.J.K.L.M.N.O.Q.R.S.T
21	44.72	2.0248	23,42	12.09	0.2000	D,E,F,G,I,J,K,L,O,P,Q,R,S
22	45.76	1.9812	53.08	10 97	0.0800	B.C.D.E.G.I.J.K.L.M.O.Q.T
23	47,48	1.9134	114.60	94.66	0.3200	B.C.D.E.F.G.I.J.K.L.M.N.O.Q.R.S.T
24	48,48	1.8762	138.88	7172	0.2000	A,B,D,E,F,G,I,J,L,M,N,O,R,S,T
25	48.98	1.8582	21.01	8.51	0.1200	DEGIJKLMNOPORST
26	49.24	1,8490	16.59	5.14	0.1200	D.E.G.J.K.M.N.O.P.O.R.T
27	50.08	1.8200	139.64	57.69	0.1600	B.D.G.I.L.M.O.P.Q.R.S.T
28	50.48	1,8065	27.32	8.46	0.1200	CEGILMOQST
-29	50.68	1.7998	19 53	2.02	0.0400	A,D,E,G,ILM,O,R
30	50.94	1,7912	17.27	10.70	0.2400	D.E.G.J.N.O.P.Q.R.S.T
-51	54.84	1.6727	50.66	15.70	0.1200/	ABCDEFGHIJRLMNOORST
32	55.30	1.6599	2180	2.26	0.0400	B.D.E.F.G.I.J.K.L.O.P.Q.R.T

33	56.52	1.6269	21.25	4.39	0.0800	ABDEFGIJKLMNOPORST
34	57.36	1.6051	39.71	8.20	0.0800	A.B.C.D.E.F.G.I.J.K.L.M.O.P.O.R.T
35	59,92	1.5425	125.07	25.84	0.0800	C.D.G.J.L.M.O.Q.R.T
36	60.10	1.5383	64.94	20.12	0.1200	ABCDGIJLMOPORST
37	60 60	1.5268	33.85	10.49	0.1200	DEFGHIJKLMOORST
38	60.96	1.5186	20.93	8.65	0.1600	D.E.F.G.I.J.L.M.N.O.P.Q.R.S.T
39	63.06	1.4730	13.03	135	0.0400	B.C.D.E.F.I.J.K.L.M.O.P.Q.R.S.T
-90	64.00	1.4536	37.52	7.75	0.0800	BCDEFILKLMOPOT
43	64.18	1.4500	18.55	5.76	0.1200	D.E.H.I.J.K.M.O.Q.R.S.T
42	64.58	1.4420	29.34	9.09	0.1200	D,E,F,I,J,L,M,O,P,Q,R,S,T
43	65.72	1.4197	25.92	8.03	0.1200	A,D,E,I,J,K,L,M,O,P,Q,R,T
-44	67.70	1 3829	88.52	36.57	0.1600	A.D.E.F.I.J.K.L.M.N.O.P.O.R.S.T
46	67.88	1 3797	34.18	10.59	0.1200	B.D.E.I.J.K.L.O.Q.R.T
46	68.28	1.3726	103.50	32.07	0.1200	DEHJKLMOQRST
47	68.46	1.3694	41.18	12.76	0.1200	B.D.E.I.J.K.L.M.N.O.P.Q.R.S.T
48	73.42	1,2886	21.76	4.49	0.0800	C.D.E.F.I.J.K.L.M.N.O.Q.R.T
49	73.60	1.2859	15.48	11.19	0.2800	C.D.E.F.H.I.J.K.L.M.OP.Q.R.ST
60	75.60	1,2568	25,92	\$ 35	0.0800	D.E.J.K.L.M.O.P.Q.R.T
61	75.80	1.2540	14.86	3.07	0.0800	A.B.D.H.I.J.L.M.O.Q.R.S.T
62	77.62	1.2291	18.24	0.77	0.0800	A.B.C.F.J.K.L.M.N.O.P.Q.R.T
53	79.82	1.2006	50.43	16 63	0.1200	B,C,J,K,L,M,N,O,P,Q,R,S,T
54	80.06	1.1976	30.15	9.34	0.1200	F.J.K.L.M.N.O.Q.R.S.T
55	81.08	1.1851	23.91	7.41	0.1200	A,F,J,K,L,M,N,P,Q,R,S,T
56	81 44	1.1808	44.18	18.25	0.1600	C, J, K, L, M, Q, R, T
67	81.70	1.1777	22.96	4.74	0.0800	F.H.J.K.L.M.N.Q.R.S.T
68	83.80	1 1534	40,56	20.94	0.2000	B.J.K.L.M.P.Q.R.S
63	84.00	1.1512	19.24	1.99	0.0400	C.F.H.J.L.M.P.Q.R
60	84.72	1.1432	18.12	37A	0.0800	B,F,H,J,K,L,M,P,Q,R,S
61	34.66	1.1417	15.29	3.16	0.0800	B,C,H,J,K,L,M,N,Q,R,S
62	85 46	1.1352	15.28	1.58	0.0400	A,C,J,K,L,M,P,Q,R,S

Integrated Profile Areas

Based on calculated profile

Profile area	Counts	Amount
Overall diffraction profile	636034	100.00%
Backpround radiation	481096	75 64%
Diffraction weaks	154638	24 36%
Prak area belonging to sulected phases	145327	23.48%
Peak area of phase & (Poracum pinate - lo	2571	0.40%
Feak area of phase B (Jon vanadium molybreoum oxide (4/1 98/3 02/20))	10003	1.5250
Peak area of otrase C (Sorium calcium herafluomaiuminate - ta)	11044	1 7490
Peak area of phase 0 (Calcium feirate manoanate)	2127	0.33%
Peak area of phase E (Dibauum octatiluorotripiccolate dacatiluorotetraniccolate)	12864	2.02%
Peak area of phase F /Dibarium octafiluorotriniccolate decafiumoletranircolate)	0837	1.55%
Peak area of pliase G (Disodium manuanese chiomium fluoride)	6315	0.99%
Peak area of phase H (Disodium tribanum tetrachromium fluoride)	11317	1.78%
Peak area of phase I (Teiraanminepalladium chromale)	2859	0.45%
Peak area of phase J (Thallium Thallium(III) highlum oxide (1 4/0.6/2/6.5))	3737	0.59%
Ptak area of obase K (Sodium calcium pentafluoroaluminate fluoride - S-beta)	8935	1.40%
Peak area of ohase I. (I anthanum nalladium oxide (4/1/7))	5346	0.84%
Peak area of phase M (Niobium thallium oxide hydrate (33/10.5/88.5/1.5))	13098	2.20%
Peak area of phase N (Rubidium nigblium tungsten oxide (12/30/3/90))	15797	2 48%
Peak area of phase O (Rubidium niobium cyclo trigemanate)	5812	0.91%
Peak area of phase P (Europium stronium copper oxide (1.1/1.7/2/5.65))	4081	0.64%
Peak area of phase Q (Banum tantalum pxide (5.5/21.8/60))	5184	0.6295
Peak area of phase R (Magnesium cobalt diphosphate (1,1/0,9/1))	6874	1.08%
Peak area of phase S (Polassium lecto-divanadato(III)tetraphosphate)	5777	0.97%
Peak area of phase T (Dithallium distrontium copper oxide)	4845	0.76%
Unidentified peak area	5610	0,88%

Peak Residuals

Peak data	Counts	Amount
Overall peak intensity	2022	100.00%
Peak intensity belonging to selected phases	2021	99.96%
Unidentified peak intensity	1	0 04%

Diffraction Pattern Graphics

Match! Copyright © 2003-2023 CRYSTAL IMPACT, Bonn, Germany

Amounts of Phases and Elements (Weight %)

Phase composition:

Sodium calcium hexatluomaluminate - \a (17.5%). Sodium calcium pentatluoroaluminate fluoride - S-beta (10.1%), Magnesium cobalt diphosphate (1.1/0.9/1) (8.8%). Potassium tecto-divanadato(III)tetraphosphate (8.1%), Dibarium octafluorotriniccolate decafluorotetraniccolate (7.2%), Disodium manganese chromium fluoride (6.8%), Dibarium octafluorotetraniccolate (5.7%), Iron vanadium molybdenum oxide (4/1.98/3.02/20) (5.5%), Nioblum thallium oxide hydrate (33/10.5/88.5/1.5) (5.3%), Rubidium niobium tungsten oxide (12/30/3/90) (5.0%), Disodium tribarium tetrachromium fluoride (4.6%), Potasium nitrate - \g (3.4%), Rubidium niobium cyclo-trigermanate (2.7%), Barium tantalum oxide (5.5/21.8/60) (2.0%), Lanthanum palladium oxide (4/1/7) (1.9%), Calcium ferrate manganate (1.3%), Tetraamminepalladium chromate (1.2%), Thallium Thallium(III) niobium oxide (1.4/0.6/2/6.6) (1.0%), Europium strontium copper oxide (1.3/1.7/2/5.65) (0.9%), Dithallium distrontium copper oxide (0.9%)

Elemental composition:

F (24.55%), C (15.09%), Ca (5.80%), Nr (5.61%), Ba (5.53%), Nr (5.15%), Na (4.41%), K (3.97%), Al (3.65%), P (3.55%), Tl (2.83%), Cr (2.36%), Co (1.88%), Mn (1.81%), V (1.75%), Mo (1.70%), Ta (1.40%), La (1.35%), Fe (1.31%), Rb (1.31%), Ge (1.08%), Mg (0.91%), N (0.70%), Pd (0.70%), W (0.48%), Sr (0.46%), Eu (0.33%), Cu (0.29%), H (0.05%) (LE 40.39%)

Match! Phase Analysis Report

Sample: Sample_J

Sample Data File name File path

Data collected Data range Original data range Number of points Step size Rietveld refinement converged Alpha2 subtracted Background subtr. Data smoothed 2theta correction Radiation Wavelength Sample_J.raw G:/.shortcut-targets-by-id/16KIMvpSIqVAUHFFggq9IVgYQzQybBTIu/Marwan - research/Concrete Mix Master Thesis/X-Ray/Birzeit University_XRD_Raw data Jul 13, 2023 08:55:21 4.920° - 89.920° 5.000° - 90.000° 4251 0.020 No No No No No No 1.08° X-rays 1.540598 A

Analysis Results

Phase composition (Weight %)

Elemental composition (Weight %)

Index	Amoun (%)	ntName	Formula sum	Element	Amount (weight %) 30.5%(*)
A	17.0	Vanadium oxide (5/9)	O9 V5	V.	75.6%
B	3.8	Telluric acid bis(caesium chloride)	Cl2 Cs2 H6 O6 Te	P	7.3%
C	10.6	Sodium calcium pentafluoroaluminate fluoride - \$-beta	AI Ca F6 Na	F	8.9%/1
D	3.7	Rubidium nioblum lungsten oxide (12/30/3/90)	N630 O90 R612 W3	Al	5.3%
E	18.7	Potassium tecto-phosphatovanadate(III) *	K 024 P7 V4	Nb	3.8%
F	1.8	Potassium lodate telluric acid	H61K O9 Te	TI	3.0%
			and the second se	Ca	2.6%
111	1.1	Procession friddlivem parcelling y drate (2010) 531 51 51	115 NOUS DS9 TH0.5	Ca	2.1%
1.	4.7	Magnesium cobalt diphosphate (1.1/0.9/1)	Coll.92 Mg1.08 O7 P2	6	7.0%
1	1.3	Lanthanum zühlbium onde (4/3/f)	LoA OF FU	Ba	1.5%
10	4.0	from verredium maryndienum awae (dr.1.98(3.02/29)	Fe4 Mid3 02 (020 1/ 1 98	Ge	1.5%
L	1.0	Hexastrontium trinitridodicuprate(1) dinitridocuprate(1)	Cu3 N5 Sr6	Ni	1.5%
M	3.7	Dinickel diphosphate	NI2 07 P2	K	1.5%
N	0.8	Dilead dioxophosphatobismuthate	BI O6 P Pb2	TI	1.4%
0	0.0	Diamany followide divelopment	352 Sec Te		
P	3.2	Dialuminium digermanate	Al2 Ge2 07	0.0	1.3%
Q	21	Chromium uranium(V) oxide	Cr O4 U	444	13%
R	1.8	Caesium zinc phosphate(V) - I	Cs O4 P Zn	Sb	1.2%
8	2.2	Antimony setenide iodide	156 Sc	Na	1.2%
T	11.3	Aluminium pentaoxotitanate	AI2 OS TI	Co	1.0%
	1.4	Unidentified peak area		Fe	1.0%
		Real Contemports in the second second second		6.5	0.9%
Amou	nts calc	ulated by RIR (Reference Intensity Ratio) method		80	0.0 %
				Sr	0.7%
				Dir.	and indian

1205	6.84.
<u>.</u>	1
×11	120-
0.00	10
170	100
M	0.040.2
2.CIMPT.	1000

Details of identified phases

A: Vanadium ox/de (5/9) (17.0 %) O9 VE Formula sum 96-100-8516 Entry number Figure-of-Meril (FoM) 0.625549 Total number of peaks 497 Feaks in range 497 Peaks matched 184 Intensity scale factor. 0.48 Space group P - 1 triclinic (anorthic) Crystal system a= 7 0050 A b= 8.3629 A c= 10.9633 A q= 91.960° B= 108.340 ° y= 110.390 ° Unit cell 1/IC 0.88 Calc. density 4.687 d/cm² Le Page Y. Bordel F. Marezio M. "Valunce ordering in V-5-O+9- below 120k", Journal of Solid State Chemistry 92, 380-385 Reference (1991)

B: Telluric acid bis(caesium

chloride) (3.8 %) CI2 Cs2 H6 O6 Te Formula sum Entry number 96-100-8452 Figure-of-Meril (FoM) 0.603052 Total number of peaks 500 Priaks in range 500 Peaks matched 127 Intensity scale factor 0.29 P121/c1 Space group Crystal system monoclinic a= 6.2430 Å b= 11 1540 Å c= 7.8620 Å B= 107.480 ° Unit ball 1/IC 2.44 Calc. density 3.802 g/cm² Reference Averbuch-Pouchol M T, "Crystal structure of a new telluric acid adduct Te(DH)-6-2CsCl". Zoitschnill fuer Hinstallographic (149,1979-) 182, 291-295 (1988)

C. Sodium calcium pontalluoroaluminate fluoride - \$-

beta (10.6 %) Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell 1/Ic Meas density Calc. density Reference

AI Ca F6 Na 96-100-0418 0.609237 189 180 21 0.61 P321 Ingonal (nexagonal axes) a= 8.9295 A c= 5.0642 A 1.50 2.880 g/cm2 2,906 g/cm² Herron A. Courbion G. "The Na F - Ca F2 - Al F3 system: acticutes of \$ beta - Na Ca Al F6 and/ha4 Ca4 Al7 F33", July rul of Solid State Chemistry 84, 153-164 (1990)

D: Rubidium niobium tungsten

oxide (12/30/3/90) (3.7 %) Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell Me Meas. densily

Nb30 O90 Rb12 W8 96-100-1018 0.631205 161 161 63 0.51 R-3 m (hexagonal axes) a= 7.4860 A c= 43.1000 A 4.33 4.570 g/cm*

Calc. density Reference I 608 g/cm² Michel C. Guyomarch A. Raveau B. "Nouveaux echangeurs cationiques avec une structure a tunnelsentrecroises. les outres A~12~ M~33~ D~80~ et A~12~ M~33~ C~90~(H~2~ O)~12~", Journal of Solid State Chemistry 22, 303-403 (1977)

E: Polassium lecto-

phosphatovanadate(III)	
Formula sum	
Entry number	
Figure-of-Merit (FoM)	
Total number of peaks	
Peaks in range	
Feaks matched	
Intensity scale factor	
Space group	
Crystal system	
Unit cell	
1/Ic	
Calc. density	
Reference	

F: Potassium iodate telluric

acid (1.8 %) Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell I/Ic Calc. density Reference

G: Potassium barium

phosphate (3.0 %)" Formula sum Entry number Figure-of-Ment (FoM) Total number of peaks Peaks to range Peaks matched Intensity scale factor Space group Crystal system Unit cell I/Ic Calc, density Reference

(18.7 %)* K O24 P7 V4 06-100-1565 0.678667* 490 499 245 0.62* P -1 Inclinic (anorthic) a= 10.0846 A b= 10.2309 A c= 10.8285 A g= 112.757* β= 109.226 * γ= 104.675 * 1.05 3.202 g/cm* Benhamada L, Grandin A, Borel M M, Leclaire A, Raveau B, "A vanadium(III) phosphate with V=2=0=10+ octabeoral units:KV=4+P=7+Q=24**", Journal of Solid State Chemistry 104, 103-201 (1993)

H61K O9 Te 06-100-8207 0.627319 499 101 0.27' F $v \ge 1 n$ orthorhombic a = 14.2200 A b = 0.6960 A c = 0.6720 Å4.76 3.520 g/cm² Averbuch-Pouchot M. T., "Crystal Chemistry of Some Addition Compounds of Alkali lodates with Tellinic Add", Jaurnal of Solid State Chemistry 49, 368-378 (1983)

Ba K O4 P 96-100-7162 0.613050 500 500 51 0.33 P o m a orthornombic a= 7 7090 A b= 5 £EB0 A c= 9.9720 A 3.41 4 140 g/cm³ Masse R, Durif A, "Chemical preparation and crystal structure refinement of K Ba P D---mumophosphate", Journal of Solici State Chemicary 71, 574-576 (1967)

H: Niobium thallium oxide hydrate

H3 Nb33 O90 T110.5
W6-100-1006
0.674975
151
161
60
0.65
R-3 <i>m</i>
trigonal (hexagena) axes)
a= 7 5100 A tr= 43,2900 A
4.67
5.263 d/cm*
Gasperin M. Synthese a une nouvelle famille d'oxydes doubles. A-8-7+ B-22-75-10-59- Structure du compose a (nallium àl mobilum", Acta Crystallographica E (24,1968-38,1982) 33, 398-402 (1977)

I: Magnesium cobalt diphosphate

(1.1/0.9/1) (4.7 %) Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range

Co0.92 Mg1.05 O7 F2 96-100-1466 0.617543 109 109

```
Peaks matched
Intensity scale factor
Space group
Crystal system
Unit cell
Vic
Calc. density
Reference
```

02 0.21 P 1 21/6 1 monoclinic = 6.9770 Å b= 8.3300 Å c= 9.0320 Å β= 113.740 ° 1.44 A.516 g/cm² Riou D. Lactaire A. Raveau B. "Structure of a cobait magnesium diphosphate. (Mp-x-Co-1-x-)-2-P-2-Q-7-*, Acta Crystallographica C (39,1983-) 47, 1583-1585 (1991)

J: Lanthanum palladium oxide

(4/1/7) (1.3 %) Formula sum Entry number Figure-of-Meril (FoM) Total number of peaks Peaks in range Peaks matthed Intensity scale factor Space group Crystal system Unit cell Vic Calc. density Reference

La4 07 Po 96-100-0485 0.607211' 807 307 42 0.25' C 1 2/m 1 monoclinic $a = 13.4600 \text{ A} b = 4.0262 \text{ A} c = 9.4480 \text{ A} \beta = 132.420 \text{ f}$ 6.05 6.907 g/cm² Attfield J P, Ferey G, "Structural correlations within the lanthanom pailadium oxide family" Journal of Solid State Chemistry **60**. 286-298 (1989)

K: Iron vanadium molybdenum

Fe4 Mo3.02 Ci20 V1 98

R6-100-0124

Cu3 N5 Sr6

N/2 07 P2

96-100-7248

0.660900

oxide (4/1.98/3.02/20) (4.0 %) Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell I/Ic Calc. bensity Reference

L: Hexastrontium Wintridodicuprate(I)

dinitridocuprate(I) (1.0 %) Formula sum Entry number Figure-of-Ment (FoM) Total numbur of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell Vic Calc, density Reference 462 462 111 0.37 P 41 2 2 lettagonal *s*= 3,5390 Å c= 17 1411 Å 2.68 3.977 g/cm⁴ Latigari Y, Permer L, Le Bai Å, "Crystal structure of Fe4 V2 Mo3 O20 dotermined from conventional X-raypewder diffraction data", European Journal of Solid State Inorganic Chemistry **32**, 325-334 (1995)

96-100-5040 0.629743 354 354 41 0.22" P 42 m c tetragonal 3= 8.6570 Å c= 7.3340 Å 6.65 4.751 g/cm² DiSalvo F J, Trail S S, Yamame H, Brese N E, "The crystal structure of Sr6 Cu3 NS with isolated, bent (Cu(I)2 N3)(7-)enions and the single crystal structural determination of Sr Cu N", Journal of Alloys Compd. **255**, 122-129 (1997)

M: Dinickel diphosphate (3.7 %)

Formula sum Entry number Figure-of-Ment (FoM) Total number of peaks Peaks in range Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell I/Ic Meas. density Calc. density Reference

0.638861 500 500 43 R.30[°] P 121/2 1 monocline a= 5.2120 A b= 9.8130 A c= 4.4750 A β= 97 460 °° 2.58 3.060 g/cm² 4.220 g/cm² Masse R, Guilet J C, Durit A. "Structure cristalline d'une neuvelle variante de pyrophospiliate dentokel Ni2 P2 O7°: Materialis Research Bulletin 10.337-541 (1979)

N: Diload

dioxophosphatobismuthate (0.8 %) BI D6 P Pb2 Formula sum 96-100-4126 Entry number Figure-of-Meril (FoM) 0.621938 499 Total number of peaks 499 Peaks in range Flaks matched 78 Intensity scale factor 0.32 Space group Poma Crystal system orthomombic a= 5.9300 Å b= 9.9790 Å c= 11.4730 Å Unit cell Me. 12.92 7.930 g/cm* Meas density Calc, density 3.068 g/cm² Mizrah A, Wignacourt J-P, Steintink H, "Pb2 Bi O2 P O4, a new oxyphosphate" Journal of Sol u State Chemistry 133, 516-51 Reference (1.997)

O: Diantimony telluride

3b2 Se2 Te

06-100-BB45

Ingonal (hexagonal axes)

a= 4 1120 A c= 29,4950 A

0.637233

151 151

16

8.41

Mam

13.25

6.100 g/cm*

6.101 g/cm*

Al2 Ge2 07 96-100-1677

0.607703

289

289

11.21

2.03

G 1 2/c 1

monoclinic

1.000 g/cm²

4.122 u/cm²

Cs O4 P Zn

96-100-7239

0.646173 497

497

24

Chemistry 62, 402-404 (1986)

a= 7.1320 A b= 7 7415 A c= 9.7020 A B= 110.620 *

48

diselenide (1.0 %) Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range **Peaks** matched Intensity scale lactor Space group Crystal system Unit cell I/IC: Meas density Calc. density Reference

P: Dialuminium

digermanate (3.2 %) Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Feaks mainhed intensity scale factor Space group Crystal system Unit cell 1/Ic Meas density Calc. density Reference

Q: Chromium uranium(V)

oxide (2.1 %) Formula sum Entry number Figure-of-Meril (FoM) Total number of beaks Priaks in range Filaks matched Intensity scale factor Space group Crystal system Unit bell. 1/Ic Calc. density Reference

96-100-8068 0.635558 338 338 32 0.65 Paca orthornombica= 4.8710 A b= 11 7870 A c= 5.0530 A 12.96 8.105 g/cm² Bacmann M, Bertaul E F, "Bructure de U Cr O~4~", Bulletin de la Societa Française du Mineralaque el de

Andriamihaja A. Ibanez A, Jumas J C. Olivier-Fourcade J. Philippot E. "Evolution structurale de la solution solide Sb2 Te(.---

Agafonov V, Kahn A, Michel D, Peroz y Jorda M, "Crystal structure of a new digermanate: Al2 Giz2 07". Journal of Solid State

Se(Y) (D < X.<2) pans le systeme Sb2 Te3 - Sb2 Se3*, Revue de Chimie Minerale 22, 357-368 (1985)

R: Caesium zinc phosphate(V) -

117.8 %) Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched intensity scale factor

CI D4 U Cristallographie(72, 1949-100, 1977) 87, 275-276 (1964) Space group Crystal system Unit cell I/Ic Calc. density Reference

S: Antimony selenide

0.29

5.09

Sb Se

494

494

44

0.52

7.57

P n m a orthorhombic

5.822 g/cm³

06-100-8205

0.670137

Pnma

arthomompic

4.110 g/cm²

a= 9.1940 A b= 5.4900 A c= 9.3880 A

a= 8.6980 A b= 4.1270 A c= 10.4120 A

rodide (2.2 %) Formula sum Entry humber Figure-of-Martt (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell I/Ic Calc. density Referance

T: Aluminium

pentaoxotitanate (11.3 %)	- 60° - 1 °
Formula sum	AI2 O5 Ti
Entry number	96-100-0061
Figure-of-Meril (FoM)	0.604606
Total number of peaks	233
Priaks in range	233
Peaks mamned	27
Intensity scale factor	0.55
Space group	Bomm
Crystal system	orthomorphic
Unit cell	a= 9 4290 A b= 9 6360 A c= 3.5910 A
1/Ic	1.54
Calc. density	3.761 a/cm ²
Reference	Morosim B, Lynch R W, "Structure studies on Al-2- Ti O-5- at room temperature and at 600C", Acta Crystallographica B (24, 1968-38, 1982) 28, 1040-1046 (1972)

Blum D, Duni A, Averbuch-Pouchot M T, "Crystal structures of the three forms of Cs Zn P O4" Furroelectrics 69, 283-292 (1986)

Ibanez A. Jumas J C. Olivier-Fourcade J. Philippot E. Maurin M. "Sur les Chalcogeno-iodures d'antimoine SbXI

(X=S,Se Te) Structures etspectroscopic Moessbauer de *121*Sb* Journal of Solid Stale Chemistry 48, 272-283 (1983)

¹⁷2theta values have been shifted internally for the calculation of the amounts, the intensity scaling factors as well as the figure-of-ment (FoM), tue to the active search-match option 'Automatic zero point adaption'.

Search-Match

Settings

Reference database used	DOD-Inorg 2023.06.06		
Automatic zeropoint adaptation	Ves		
Downgrade entries with low scaling fa	ctors ves		
Minimum figure-of-meril (FoM)	0.60		
2theta window for peak con.	0.30 deg.		
Minimum rel. Int. for peak corr.	0		
Parameter/influence 2theta	0.50		
Parameter/influence intensities	0.50		
Parameter multiple/single phase(s)	0.50		

Peak List

No.	Ztheta [*]	d [A]	1/10 (peak height) 8.93	Counts (peak area)	FWHM 0.1600	Matched
2	12.14	7 2846	8.03	10.26	0.2400	DEHN
3	18.02	4.9167	12.05	7.71	0.1200	ABEEGJKMD
4	20.84	4 2590	145 23	92.91	0.1200	CEEKRT
5	23.02	3.8604	19.75	16.B4	0.1600	ABCEFGIKLPOS
6	24.02	3,7019	7.90	1.68	0.0400	A.B.D.E.F.I.J.K.L
7	26.62	3,3459	1000.00	639 79	0.1200	ABCDEFGHJKLPORST
8	26.98	3.3021	15.41	29.58	0.3600	ABDEFKMOPR
9	29.38	3.0376	266.72	284.41	0 2000	A.D.E.F.G.H.I.J.K.L.M.N.O.O.S
10	29.94	2,9820	8.56	1.83	0.0400	BIJKPS
91	30.12	2,9646	9.43	6.04	0.1200	ADEFHIJKNPOR
12	30.90	2.8915	97.49	(03.96	0.2000	A.B.D.E.F.G.H.J.K.L.M.N.R.S
13	32.10	2,7861	16.43	35 04	8,4000	A.B.D.E.H.I.K.L.M.S
14	32.52	2,7511	30.98	19.62	0.1200	A.B.E.F.K.L.N.R.T
15	33.00	2.7122	13.15	11.22	0.1600	A.B.E.F.O.R.S
16	33 60	2.6498	23.94	25.62	0.2000	BEFKLMST
17	34.06	2.6302	21.01	22.40	0.2000	A.B.E.F.I.K.N.P.Q
18	35.38	2.5350	11.11	9.48	0.1600	ABCEFGIJKNPQRS
19	35.94	2,4968	32.17	27.44	0.1600	ABD, EF, GH, JMN, PS
20	36.54	2.4571	31.57	26.93	0 1600	A.B.D.E.F.G.H.I.J.K.N.O

21	37.34	2.4063	11.97	5.10	0.0800	A,C,D,E,H,I,K,L,N,P,T
22	39.42	2.2840	67.27	86.07	0 2400	A.B.C.D.E.F.G.H.I.J.K.L.M.N.O.P.R.T
23	40.30	2.2361	22.41	9,56	0.0800	A.B.C.D.E.F.G.H.I.J.K.M.N.P.Q.R.S
-24	41.10	2 1944	26.30	28.04	0.2000	A.C.E.F.G.I.J.K.L.N.Q.R
25	#2:40	2.1301	29.62	12,64	0.08004	B.C.D.E.F.G.H.I.J.K.L.M.N.O.P.O.R.S.T
26	43.14	2.0953	32.62	34.78	0.2000	A.B.E.F.G.H.I.K.L.M.N.Q.R
27	43.84	2.0634	13.00	24.95	0.3600	ABBEFGHIKLMNOQRS
28	44,90	2.0171	12.97	8.30	0.1200	A.B.D.E.F.H.I.J.L.M.N.O.P.R.S
29	45.74	1.9820	17.99	11.51	0.1200	A B C D E F H I J K N PS
30	47.48	1.9134	50.91	54.29	0.2000	ABODEFGHIJKMNOPOST
31	48.46	1.8760	38.74	41.31	0.2000	A.B.D.E.G.H.I.K.L.N.R.O.R.S
32	50.10	1.8193	77.76	86 33	0.1600	ABDEFGHKLMNOS
33	50.50	1.8058	9.13	7.79	0.1600	A.B.C.D.E.F.G.H.K.M.N.R.S
34	51.06	1 7873	11.23	4.79	0.0800	A.B.D.E.F.G.H.I.K.L.M.N.P.O.R.T
35	54.82	1.6733	21.75	13.91	0.4200	ABCDEFGHJJKMPORT
36	54.98	6688	9.90	4.22	0.0800	ABDEFGHIJKNPRST
37	57 32	1 6061	10.41	11.10	0.2000/	ABCDEFGHIJKLMNOPORST
38	59.92	1.5425	43.33	27.72	0.1200	ABCEFHIKLMNPORS
39	60.68	1.5250	9.03	\$76	0.1200	ABDFGHIKLMNOPORT
40	64.64	1.4408	8.71	11.14	0.2400	A.B.D.F.G.H.I.J.K.L.M.N.P.O.S.T
41	67 72	1.3825	70.93	45 38	0.1200	ABDFGHIJKLNRS
42	67.90	1.3795	31:34	13.37	0.0800	A.D.F.G.H.I.J.K.N
43	68,10	1.3757	29.57	18.92	0.1200	A.B.F.G.K.L.N.O.R.S.T
44	68.28	1.3726	21.79	18.59	9.1600	ABDFGHIJKLNPORST
45	80.06	1 7984	7.84	1.67	0.0400	B,F,G,I,J,K,L,M,N,P,Q,R,S,T
46	81.44	1 1808	63.73	34.38	0.1200	B.C.F.LJ.K.L.M.N.P.Q.R.S.T
47	81.70	1 1777	26.05	16.67	0.1200	B.F.I.J.K.L.M.N.O.P.O.R.S.T
48	83.60	1 1534	11.02	9,40	0.1600	B.F.G.I.J.K.L.M.N.O.P.Q.R.S.T

Integrated Profile Areas

Based on calculated profile

Profile area	Counts	Amount
Overall diffraction profile	E11337	100 00%
Background radiation	433402	70.89%
Diffraction peaks	177935	29.11%
Peak area belonging to selected phases	169351	27.70%
Peak area of phase A (Aluminium pentaoxolitanate)	7975	7.29%
Peak area of phase B (Iron vanadium molybdenum oxide (4/1.08/3.02/20))	8357	1.37%
Peak area of phase C (Sodium calcium pentafluoroaluminate fluonde - 1-bela)	10204	1.67%
Peak area of phase D (Lanthanum palladium pxide (4/1/7))	3760	0.62%
Peak area of phase E (Niobium thallium oxide hydrate (33/10.5/88.5/1.5))	14009	2.29%
Peak area of phase F (Rubidium niobium tungsten oxide (T2/30/3/90))	13088	2.14%
Peak area of phase G (Magnesium cobalt diphosphale (1.1/0.9/1))	3770	0.62%
Peak area of phase H (Potassium tecto-phosphafovanaulate(III) *)	17897	2.93%
Peak area of phase I (Dialuminium digermanate)	5770	0.9459
Peak area of phase J (Dilead dioxophosphatobismulhete)	4626	0.76%
Peak area of phase K (Hexastrontium mnitridodicuprate(I) dinitridocuprate(I))	3180	0.52%
Peak area of phase L (Potassium barium phosphale)	8764	7.43%
Peak area of phase M (Capalum zinc phosphate(V) / II	6759	1.7196
Peak area of phase N (Dinickel diphosphata)	4031	0 66%
Peak area of phase D (Chromium uranium(V) oxide)	8172	1.34%
Peak area of phase P (Antimony selenide lodide)	9401	1 54%
Peak area of phase Q (Potassium iodate tailuric acid)	5460	0 89%
Peak area of phase R (Teliunc acid bis(caesium chloride))	15665	2.56%
Peak area of phase S (Vanadium pxide (5/9))	14410	2.36%
Peak area of phase T (Diantimony telluride diselenide)	4114	0.67%
Unidentified peak area	8583	1 40%

Peak Residuals

Peak data	Counts	Amount	
Overall peak intensity	2008	100.00%	
Peak intensity belonging to selected phases	2008	99.96%	
Unidentified peak intensity	1	0.04%	

Diffraction Pattern Graphics

Amounts of Phases and Elements (Weight %)

Phase composition:

Potassium tecto-phosphatovanadate(III) * (18.7%), Vanadium oxide (5/9) (17.0%), Aluminium pentaoxotitanate (11.3%), Sodium calcium pentafluoroaluminate fluoride - Sbeta (10.6%), Magnesium cobalt diphosphate (1.1/0.9/1) (4.7%), Niobium thallium oxide hydrate (33/10.5/88.5/1.5) (4.4%), Iron vanadium molybdenum oxide (4/1,98/3.02/20) (4.0%), Telluric acid bis(caesium chloride) (3.8%), Rubidium niobium tungsten oxide (12/30/3/90) (3.7%), Dinickel diphosphate (3.7%), Dialuminium digermanate (3.2%), Potassium barium phosphate (3.0%), Antimony selenide iodide (2.2%), Chromium uranium(V) oxide (2.1%), Caesium zinc phosphate(V) - I (1.8%), Potassium iodate telluric acid (1.8%), Lanthanum palladium oxide (4/1/7) (1.3%), Hexastrontium trinitridodicuprate(I) dinitridocuprate(I) (1.0%), Diantimony telluride diselenide (1.0%), Dilead dioxophosphatobismuthate (0.8%)

Elemental composition:

C (30,48%), V (15,81%), P (7,28%), F (5,93%), AI (5,31%), Nb (3,81%), Ti (2,97%), Cs (2,60%), Ca (2,08%), Te (1,59%), Ba (1,53%), Ge (1,52%), Ni (1,43%), K (1,46%), Ti (1,43%), U (1,39%), I (1,34%), Mb (1,26%), Sb (1,24%), Na (1,20%), Co (0,99%), Fe (0,97%), La (0,94%), Se (0,81%), Sr (0,70%), Rb (0,65%), Mg (0,48%), CI (0,47%), Pb (0,43%), Zn (0,40%), W (0,35%), Cr (0,30%), Cu (0,25%), Bi (0,22%), Pd (0,18%), N (0,09%), H (0,07%) (LE 36,56%)

Match! Phase Analysis Report

Sample: Sample_N

Sample Data File name File path

Data collected Data range Original data range Number of points Step size Rietveld refinement converged Alpha2 subtracted Background subtr. Data smoothed 2theta correction Radiation Wavelength Sample_N.raw G:/.shortcut-targets-by-id/16KIMvpSIqVAUHFFggq9IVgYQzQybBTlu/Marwan - research/Concrete Mix Master Thesis/X-Ray/Birzeit University_XRD_Raw data Jul 13, 2023 10:36:48 4.710° - 89.710° 5.000° - 90.000° 4251 0.020 No No No No No No No No No

Analysis Results

Phase composition (Weight %)

Elemental composition (Weight %)

Index AmountName		tName	Formula sum	Element	Amount (weight %)
	(%)	The interaction	4-0.7-0	0	33.0%()
A	1.1	Zinc arsenide	ASZ ZN3	P	12.270
В	5,5	Incadmium arsenide trichlonde	As Cd3 Cl3		
6	0.4	Detailarn cx(c)	OG TB2		
-					1.000
-	124	manual and a standard in the second standard in	O enternal		1.1 .
F	17.7	Potassium tecto-phosphatovanadate(III) *	K 024 P7 V4		4 4 4 7
G	9.5	Magnesium hydroxide sulfate hydrate (1.3/.7/1/.3)	H1.3332 Mg1.3333 O4.9999 S	E.C.	3.200
н	7.7	Magnesium bis(hydrogensulfate)	H2 Mg O8 S2	00	3.0%
1	3.8	Iron vanadium molybdenum oxide (4/1.98/3.02/20)Fe4 Mo3.02 O20 V1.98		3,0%
J	0.5	Dyspresium oxide	Uy2 O3	De	2.0%
10.0	12.4	Dibait dim/Whends Landata	112 Q7 Pb2 bird	As	2.2%
L	0.4	Dilead dilm(IV) exide 0.1-hydrate	H1.4 06.7 Pb2 Sh2	Ba	1.9%
M	0.4	Dilgad ditre Mr celde	O6 Ph3 SH2	Sb	1.9%
N	5.3	Dibarium hexairon(III) oxide	Ba2 Fe6 O11		
0	3.6	Chromium(II) enromum Reende	C(2 F3		14%
P	4.4	Caesium tetrafluorocobaltate	Co Cs F4	Nb	1.3%
0	3.6	Caesium nioblum phosphate (1/3/3)	Cs Nb3 015 P3	Rb	1.3%
R	0.7	Cadmium tetravttrium trimolybdenum oxide	Cd Mo3 O16 Y4	AL	1.2%
9	3.6	Cadmium arsenic chloride *	As Cd2 Cl2	Ca	1.0%
T	12.1	Aluminium catena-phosphate	AL 09 P3	- 20	1.0%
1	20	Unidentified neak area	10 - C C C	20	0.8%
	2.0	ondenined peak area		Ph	0.6%
Amounts calculated by RIR (Reference Intensity Ratio) method		Die	0.070		
		and a first of the second s		Th	73 4 77
				50	11 206
				SIL	0.370
				1.	10.270
				"LE (sum)	40.3%
Details of identified phases

A: Zinc arsenide (1.7%) Formula sum Entry number Figure-of-Menit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell Vic Meas. density Cato. density Reference

8: Tricadmium arsenide

trichloride (5,5 %)" Formula sum Entry number Figure-of-Ment (FoM) Total number of peaks Peaks matched Intensity scale factor Space group Crystal system Unit cell Vic Meas: density Calo, density Reference

C: Terbium oxide (0.4 %)

Formula sum Entry number Figure-ol-Ment (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell I/Ic Catc. density Reference As2 2n3 96-101-1350 0.627541 412 54 0.28 P 42/n m c letragonal = 8.3160 A = 11.7600 A 5.89 5.580 g/am 5.80 g/am 5.852 g/cm² Stackalberg M von, Paulus R, "Untersuchungen an den Phosphiden und Atseniden des Zinks und Cadmiums.Das Zn3 P1 - Gitter Zeitschrift füer Physikalische Chemie, Abtellung B. Chemie derElementarprozesse, Aufbau der Materie **28**, 427-460 (1935)

As Gd3 Cl3 96-100-1626 0.626365 500 500 111 0.36 Pinmis arthorhom/sc = 13.1440 A b= 8.1020 A (= 7.0820 Å 2.25 4.560 g/cm² 4.566 g/cm² Rebbah A, Yazbeck J, Descharwies A, "Smucture de Cd3 As Cl3 et Donnees Cristallographiques de Cd3 P Cl3", Acta-Crystallographica 6 (24,1968-36,1982) **36**, 174+1745 (1980)

O3 Tb2 95-101-0338 0.644515 64 64 76 18 0.22° 121 3 cubic a= 10.7000 Å 17.23 7.934 g/cm² Zachanasen W. "The crystal structure of the modification C of the sesquicoxicion of therare earth metals, and of indium and Thallium ", Norsk Geologiek Tideskrift 9, 310-316 (1927)

D: Silicon oxide \$-aipha Quartz

low (11.5 %) Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell T/Ic Meas. density Calo. density Reference

E: RUBIDIUM DIFLUOROANTIMONY

SULFATE (5.2 %) Formula sum Entry number Figure-of-Menit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor 02 Si 96-101-1098 0.770398' 70 70 23 0.97' P.31 2 1 bigonal (hexagenal axes) a= 4.9130 A ⊂ 5.4040 A 291 2 660 g/om² 2 649 g/om² 2 640 g/om² 2 7 640 g/om² 2 640 g/om² 2 7 640 g/om² 2 7 640 g/om² 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

F2 O4 Rb S Sb 96-100-8188 0.638463 500 500 89 0.39 Space group Crystal system Unit cell Me Meas demaily Calo, density Reference

Pna2t enthorhombic ⇒ 9.6010 Å b= 11.5100 Å c= 5.2020 Å 2.62 1930 g/cm² 1943 g/cm² Fourcade R, Bourgauti M, Bonnet B, Ducourant B, "Synthese el structure du sulfate double M Sb F-2- S O---- (M = Rb,Cs) Journal of Solid State Chemistry 43, 61-86 (1982)

F. Potassium tecto-

Unit cell

I/IC

phosphatovanadate(III) * (17.7 %) K 024 P7 V4 Formula sum Entry number 96-100-1565 Figure-of-Medt (FoM) 0.650567 Total number of peaks 499 499 Peaks in range Peaks matched 203 Intensity scale factor 0.54 Space group. P-1 Crystal system triclinic (anorthis a= 10.0846 A b= 10.2309 A c= 10.8283 A g= 112.757° B= 109.226 ° y= 104.675 ° 1.05 Calc. density 5.202 g/cm² Benhamada L, Grandin A. Borel M M, Leclaire A. Raveau B. "A vanadium(III) phosphate with V-2~O-10- octahedral Reference

G: Magnesium liydroxide sulfate

hydrate (1.3/.7/1/.3) (9.5 %) Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Internsity scale factor Space group Crystal system Unit cell VIE Calc. density Reference

H: Magnesium

bis(hydrogensulfate) (7.7 %) Formula sum Entry nuntber Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system 1008 0.001 Me Cata density Reference

I: Iron vanadium molybdenum

oxide (4/1.98/3.02/20) (3.8 %) Formula sum Eniry number Figure-ol-Menil (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell Mc Calc. density Reference

J: Dysprosium oxide (0.5 %) Formula sum Entry number Figure-of-Ment (FaM)

units:KV-4-P-7-Q-24-* Journal of Solid State Chemistry 104, 193-201 (1993) HT 3332 Mg1 3333 O4 9999 S 96-110-0076 0.619373 122 122 27 0.50 14t/amd tetragonal = 5.2420 A = 12.0950 A 1.80 2.711 g/cm² Keefer K.D. Hochella M.F. jr., de Jong B.H.W.S. "The Structure of the Magnesium Hydroxide Sulfate Hydrate Mg S C+4+ (Mg C Hj-2-j- 3333- (H-2- O)- 3335-", Acta Crystallographica E (24,1968-38,1982) 37, 1003-1006 (1981)

HZ Mg D8 52 96-110-0085	
0.646968	
500 77	
0.29 P121/01	
monuclinic a= 7.2990 A b= 8.2730 Å c= 4.9400 Å B= 99.990 °	
1:30 2:468 g/cm ³	Automotive and
Simonov M A, Troyanov S I, Keminitz E, Haas D, Kaminier M, "Grystal structure of Mg (H S O-4~)-2- 1221 (1986)	-*, Kristaliografiya 31, 1220-

Fe4 Mo3.02 O20 V1 95 95-100-0124 0.572030 462 46Z 151 0.32 P4122 **letrauonal** = 9.5390 A == 17.1411 A 2.88 1977 g/cm? Laligant Y, Permer L, Le Bait A, "Crystal structure of Fe4 V2 Mo3 Q20 determined from conventional X-raypowder difficaction data" European Journal of Solid State Inorganic Chomistry 32, 325-334 (1985)

Dy2 03 96-101-0337 0.601801

Total number of peaks	84
Peaks in range	84
Peaks matched	17
Intensity scale factor	0.23
Space group	121.5
Crystal system	cubic
Unit cell	a= 10.6300 Å
1/lc	17.60
Calo density	9.250 a/ant
Reference	Zachamasen W. "The covistal structure of the modulization C of the sesturioxides of theraine sentence taken and dividuo and thelium
	Novsk Geolonisk Tidsakrifk9, 310-316 (1927)
	The all desired and the state of the state o
K- Diload dilla/IA avida	
N. Diread dilin(iv) oxide	
hydrate (0.4 %)	17 C D D - 4
Formula sum	H2 07 P62 Sh2
Entry number	95-100-1093
Figure-of-Merit (FoM)	0.500504
Total number of peaks	53
Peaks in range	53
Peaks matched	12
Intensity scale factor	0.20
Space moop	Fd-3m
Crueral sustam	aubic
Unit cell	at 10 7186 A
V/P	10.56
Cale marcily	1920 A 241 al/m2
Deferance	Manualitan Bartarat I, Mahal M A, "Sur Lu compass de luna numélitare de formula De 25 Se 25 O Se (H-25 O)X" Austrie de
Transidance	Characterization of the state o
	Chining (Paris) (Vol-16a) 1971. 103-124 (10/11
I - Bills of Build min sugar a -	
L' Dilead dian(IV) oxide 0.1-	
hydrate (0.4 %)	
Formula sum	Hr.4 06.7 Pb2 Sn2
Entry number	96-100-1147
Figure-of-Merit (FoM)	0.600620
Total number of peaks	53
Peaks in range	53
Peaks matched	12
Internetity scale factor	0.20
Spring group	Cd am
Churchen and and and and and and and and and an	
Lingstal system	
Dhitt cell	3= 10.7100 A
Mc Cale Annoline	10.73
Laid. density	B. 195 gram
Koterence	Morgenstam Badarau I. Michal A. Miele on avidance d'une nouvella phase de type pyrochlore. PD+2+ Sh-2+O+6+ (1+2+D)+x+
	Comptes Kendus Nebdomadares des Seances de l'Academie des Sciences, Seire C, Sciences Chimiques (1960-) 271, 1313-1316
	(1370)
M: Dilead ditin(IV) oxide (0,4 %)	
Formula sum	06 Pb2 Sh2
Entry number	96-100-1094
Figure-of-Ment (FoM)	0.600713
Total number of neaks	53
Peaks in range	53
Basile matched	
Intensity erate fautor	
Contractly action (Bland)	0.20
space group	rash
Crystal system	Cubic Trans.
Ling Dam	a= 11./186.8
Cale density	150.877 a 1967 - Aur 5
Late, density	o.vo/g/cm
Reference	Morgenstern Badarau I, Michel M.A. Sur un compose de type pyrochiore de formule Pb-2-Sr-2- O-6- (H-2+O)X, Armales de
	Chimie (Pans) (Vol=Year) 1971, 109-124 (1971)
d and we have been the	
N: Dibarium hexairon(III)	
oxide (5.3 %)	
Formuta sum	Ba2 FeB O11
Eniry number	36-100-4047
Figure-of-Meril (FoM)	0.607090
Total number of center	506
Dealer in rates	Loov
reaks in failus	

96-100-4047 9.607999 500 500 166 0.28° P n m m orthorhombic = 23.0240 A b= 5.1810 A c= 0.9000 A 1.67 4.960 g/cm² 4.915 g/cm² Bolvin J C, Thomas D, Poulliard G, Perrol F. "Determination de la Structure tristalline du territe dé baryium BaFe-6+ 0+11-* Bolvin J C, Thomas D, Poulliard G, Perrol F. "Determination de la Structure tristalline du territe dé baryium BaFe-6+ 0+11-*

Peaks matched

Space group Crystal system Unit cell

Meas, density Calc, density Reference

I/Ic

Intensity scale factor

O: Chromium(II) chromium fluor/de (5.8 %) Ci2 F5 Formula sum Entry number 96-100-0421 Figure-of-Merit (FoM) 0.615477 Total number of peaks 285 Peaks in range 285 Peaks matched 43 Intensity scale factor 0.34 Space group C12/c1 Crystal system monoclinic a= 7 7526 A b= 7 5228 A c= / 4477 A B= 124.081 * Unit cell Me 2.00 Calc, densily 3.673 g/cm²

Lacorre P, Ferey G. Pannetier J. "The magnetic structure of Cr2 F5", Journal of Solid State Chemistry 98, 227-236 (1992)

P: Caesium

Reference

tetralluorocobaltate (4.4 %) Co Cs F4 Formula sum Entry number 96-100-0491 Figure-ol-Ment (FoM) 0.644248 Total number of peaks 218 Peaks in range 218 Peaks matched 70 Intensity scale factor 0.46 Space group 1412 Crystal system (e)rayonal Unit cell a= 12.4476 A t= 12.8277 A 3.67 1/Ic Calc. density 4.440 g/cmP Lacorre P, Pannelier J, Flarscher T, Hoppe H, Ferey G, "Ordered magnetic flustration: XVI.Magnetic structure of Cs Cu Fx at 15k Reference Journal of Solid State Chemiatry 93, 37-45 (1991)

Q: Caesium niobium phosphate

(1/3/3) (3.6 %) Formula sum Enity number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell Mc. Calc. densily Reference

Cs Nb3 D15 P2 96-100-1451 0.614387 499 199 160 0.23 Pnnm orthorhombic a= 13.4454 A b= 14.8114 A c= 6.4422 A 2.27 3.854 g/cm² Bonel M M, Grandin A, Costentin G, Leclairo A, Raveau B, 'A new series of bronzes and bronzoids with KNb-3+P-3+O+15 structure", Materials Research Bulletin 25, 1155-1160 (1090)

R: Cadmium tutrayttrium

trimolybdenum oxide (0.7 %) Formula sum	Ca Mo3 O16 V4
Entry number	-10-6105
Figure=of-Merit (FoM)	0.649172
Total number of peaks	137
Peaks in range	137
Peaks matched	23
Intensity scale factor	0.21
Space group	Pn-3n
Crystal system	cubic
Unit cell	a= 10.6880 Å
Vic	10.69
Meas. density	a 670 g/am²
Calc. densily	5.504 g/cm ²
Reference	Bourdet J B, Chevaller R, Fournier J F. Köhlmuller R, Ornaly J, "A structural study of cadmium yllinum molybdate Cd V-4- Mo-3- O-16-", Ada Crystallographica B (24, 1956-38, 1962) 38, 2371-2374 (1982)

S: Cadmium arsenic chloride

13.6 % Formula sum Entry number Figure-of-Menil (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell ME

As Cd2 Cl2 96-100-1162 0.621103 896 498 122 0.32 P121/01 monoclinec a= 7.6560 Å b= 9.1930 Å c= 8.1890 Å β= 119.950 * 5.04

Maas, density Calo, density Raference	4.860 g/cm ² 4.803 g/cm ² Rebbah A, Yazbeck J, Leclaire A, Deschanvres A, "Structure du Dichlorum d'Arsenic et de Dicadmium", Acta Crystallographica B (24,1968-38,1982) 36 , 771-773 (1980)
T: Aluminium catena- phosphate (12.1 %) Formula sum Entry number Figure-of-Menit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor	AL D9 P3 98-101-0267 0.625739 108 108 23 0.73
Space group Crystal system Unit cell I/Ic Calo, density Reference	I -4 3 d cubic a= 13,6800 A 2.08 2.769 g/cm ² Pauling L, Sherman J, "The Crystal Structure of Aluminum Metophosphate, Al (P D-3~)-3~". Zeitschuft füer Kristallographie Kristallgeometrie, Kristallohysik Kristallohemie (-144, 1977) 96 , 481-487 (1937)

¹/2theta values have been shifted internally for the calculation of the amounts, the intensity scaling factors as well as the figure-of-ment (FoM), due to the active source-match option 'Automatic aero point adaption'.

Search-Match

Setungs	The second second second
Reference database used	COD-Inorg 2023.06.06
Automatic zeropoint adaptation	Yas
Downgrade entries with low scaling fat	torsYes
Minimum figure-of-ment (FoM)	0.60
2theta window for peak corr.	0.30 deg.
Minimum rel. int. for peak corr.	-0
Parameter/influence 2theta	0.50
Parameter/influence intensities	0.50
Parameter multiple/single phase(s)	0.50

Peak List

No.	2theta [*]	d [A]	1/10 (peak height)	Counts (peak area)	FWHM	Matched
. 9 .	5.37	16.4436	6.13	.2.21	0.0400	
2	20.59	4.3102	171.66	185.42	0.1200	CDEFLINDRT
3	22.78	3.8988	16.78	36.25	0.2400	A.F.H.I.N.P.Q.S
4	23.75	5.7434	13.22	9.52	0.080.0	B.C.F.H.J.K.L.M.O.Q.R.S.
5	24 69	3.8029	14.33	15.48	0.1200	EFHIPO,ST
B .	26.39	3.3746	1000.000	1080.19	0.1200	ABCDEFGHIJNOPORST
7	27.17	3,2794	24.82	17.87	0.0800	B,F,H,I,Q,S
D	27.49	3.2420	6.21	6.71	0.1200	F.G.I.K.L.M.N.O.P.O.S
21	29.13	3.0631	163.96	295.19	0,2000	B.C.E.F.I.J.K.L.M.N.O.P.Q.R.S.T
10	30.63	2.9164	65.42	99.7T	0.2000	A.B.E.F.I.N.P.Q.T
31	32.49	2,7536	19.76	35.57	0.2000	A.B.E.F.H.I.N.Q.S
12	33.59	2,6659	7.04	2.54	0.0400	B.C.E.F.L.IK.L.M.N.P.Q.R.S.T
12	35.69	2.5137	22.23	40.03	0.2000	A.B.C.F.H.I.J.N.O.P.O.R.S
14	36.27	2.4748	60.18	65.00	0.1200	B,D,E,F,I,K,L,M,N,P,Q,S,T
15.	39.19	2.2969	88.17	63.49	0.0800	ABCDEFGHINPOS
16	40.01	2 2517	23.82	25.73	0.1200	A.B.D.E.FHIJJNPO.S
17	42.19	2 1402	26.61	28.74	0.1200	A.B.D.E.F.I.N.O.P.Q
18	42.91	2.1060	10.98	50.37	0.2800	B.C.E.F.H.I.N.P.O.R.S.T
18	43.51	2.0783	10.79	19.42	0.2000	ABEFHIJNOPO
20	43.67	2.0711	6 89	12.40	0.2000	BEGHIKLMOPOS
21	45.51	1.9915	28.48	51.28	0.2000	ABDEFILLNOQRS
22	47.27	1.9214	20.37	44.01	0.2400	B.E.F.H.I.N.P.O.S.T
23	48.21	1.8861	22.94	66.08	0.3200	C.E.F.I.J.K.L.M.N.O.P.O.R.T
24	48.73	1.8672	5.57	18.04	0.3600	A.B.E.F.G.H.I.N.Q.S
25	49 85	1.8278	92.96	100.41	0.1200	A.C.F.H.I.P.Q.B
26	50.01	1.8223	39.81	43.01	0.1200	AB.D.E.F.H.J.N.P.Q.S.T
27	54.59	1.6798	51.10	55.19	0.1200	A.E.F.I.J.N.P.O.S.T
28	54.78	1.6752	21.48	30.93	0.1600	B.D.F.N.O.S
29	55.03	1.6674	9.87	7.15	0.0800	ABEFGINOPORS
30	67.1t	1.6115	9:19	23.17	0.28004	BCDEFGHIKLMNOPORST
31	50.67	1.5483	156.55	98.33	0.0800	B.E.F.H.I.K.L.M.N.P.O.
32	50.83	1.5446	67.33	72.73	0.1200	C.D.E.F.H.I.N.O.P.Q.R.S.T
33	63 77	1.4583	10.72	7.72	0.0800	ABEINOPOS
34	63.93	1.4550	6.09	4.38	0.0800	B.C.D.G.IN.P.O.R.S.T
35	67.47	1.3870	26.44	28.56	0.1200	A.B.E.G.H.I.N.O.P.O.R.S.T
36	67 65	1.3838	12.86	13.89	0.1200	B.D.E.G.H.I.N.O.S
37	68.03	1.3770	63.67	68.77	0.1200	A.B.D.E.G.H.I.N.P.Q.S.T
38	73.41	1.2888	5.58	2.01	0.0400	ABDEGHIJNOPORS
39	74 35	1.2748	20.84	15.01	0.0800	B.C.E.H.I.N.O.P.Q.R.S.T
40	74.57	1.2716	10.22	7.36	0.0800	A.B.E.G.I.J.N.O.P.O.S
41	75.37	1.2601	23.24	16.74	0.080.0	B.C.E.H.I.K.L.M.N.O.P.Q.R.S
42	75.61	1.2567	0.82	1.07	0.0800	ABOEHIJNOPOST
41	77.38	1.2321	26.42	19.03	0.0800	ABEILLANOPORST

44	77.63	1.2289	11.39	12.30	0.1200	B.C.D.E.G.H.I.K.L.M.N.O.P.Q.R.S
45	79.59	1.2035	93.49	67.33	0.0800	BEHIJNPOST
46	79.83	1.2005	47.79	51.62	0.1200	A.B.D.E.H.I.K.L.M.N.P.Q.S
-42	-80.89	1.1874	14.72	15.90	0.1200	A.B.E.H.I.J.N.O.P.O.R.S
45	61.21	1.1835	23.02	24.87	0.1200	B.D.E.H.I.N.O.P.Q.S
49	81.45	1.1807	9.48	13.62	0.1600	ABC, DE, HIN, O, P, O, R, S, T
50	83.55	1.1562	18.78	24.16	0.1600	BEHINOPOS
-51	63.81	1.1533	9.82	0.61	0.1200	A.B.C.D.E.G.H.I.N.O.Q.R.S.T

Integrated Profile Areas

Based on calculated profile

Profile area	Counts	Amount	
Overall diffraction profile	689385	100.00%	
Background radiation	443235	64.29%	
Diffraction peaks	246150	35.71%	
Peak area belonging to selected phases	232070	33.66%	
Peak area of phase A (Zinc arsenide)	4069	0.59%	
Peak area of phase B (Tricadmium arsenide trichlorio	17192	2.49%	
Peak area of phase C (Terbium oxide)	2038	0.50%	
Peak area of phase D (Silicon pylde S-alpha Quartz low)	37268	5.47%	
Peak area of phase E (RUBIDIUM DIFLUOROANTIMONY SULFATE)	18427	2.67%	
Peak area of phase F (Potassium lecto-phosphatovanadate(III) *)	28854	4.19%	
Peak area of phase G (Magnesium hydroxide sulfale hydrale (1 3/.7/1/.3))	14302	2.07%	
Peak area of phase H (Magnesium bis(hydrogensulfale))	7585	T.10%	
Peak area of phase I (Iron vanadium molybdenum oxide (4/1.98/3.02/20))	11249	1.63%	
Peak area of phase J (Dysprosium oxide)	3086	0.45%	
Peak area of phase K (Dilead dilin(IV) oxide hydrate)	1683	0.24%	
Peak area of phase L (Dilead dilin(IV) oxide 0.7-hydrate)	16.70	0.24%	
Peak area of phase M (Dilead ditin/IV) oxide)	1631	0.24%	
Peak area of phase N (Dibanum hexairon(III) oxide)	19007	2.76%	
Peak area of phase O (Chromium(II) chromium fluoride)	8076	1.17%	
Feak area of phase P (Caesium letralluorocobaltate)	16380	2.38%	
Peak area of phase Q (Caesium nioblum phosphale (1/3/3))	12421	r.80%	
Peak area of phase R (Cadmium tetraythrum trimolybdenum oxide)	1790	0.26%	
Peak area of phase S (Cadmium arsenic chloride *)	15826	2.30%	
Feak area of phase T (Aluminium caterra phosphate)	9516	1.58%	
Unidentified peak area	14080	204%	

Peak Residuals

Puak data	Counts	Amount
Overall peak intensity	3113	100.00%
Peak intensity belonging to unlected phases	3111	0.94%
Unidentified peak intensity	2	0.06%

Diffraction Pattern Graphics

Match! Copyright © 2003-2023 CRYSTAL IMPACT, Bonn, Germany

Amounts of Phases and Elements (Weight %)

Phase composition:

Potassium tecto-phosphatovanadate(III) * (17.7%), Aluminium catena-phosphate (12.1%), Silicon oxide S-alpha Quartz low (11.5%), Magnesium hydroxide sulfate hydrate (1.3/.7/1/.3) (9.5%), Magnesium bis(hydrogensulfate) (7.7%), Chromium(II) chromium Iluoride (5.8%), Tricadmium arsenide trichloride (5.5%), Dibarium hexairon(III) oxide (5.3%), RUBIDIUM DIFLUORDANTIMONY SULFATE (5.2%), Caesium tetrafluorocobaltate (4.4%), Iron vanadium molybdenum oxide (4/1.98/3.02/20) (3.8%), Cadmium arsenic chloride * (3.6%), Caesium niobium phosphate (1/3/3) (3.6%), Zinc arsenide (1.7%), Cadmium tetrayttrium trimolybdenum oxide (0.7%), Dysprosium oxide (0.5%), Terbium oxide (0.4%), Dilead ditin(IV) oxide hydrate (0.4%), Dilead ditin(IV) oxide 0.7-hydrate (0.4%), Dilead ditin(IV) oxide (0.4%)

Elemental composition:

D (35:56%), P (9:24%), Cd (5:82%), Si (5:38%), S (4:84%), V (4:68%), F (4:60%), Fe (3:19%), Cr (3:05%), Mg (2:98%), Cs (2:80%), As (2:25%), Ba (1:87%), Sb (1:85%), Cl (1:81%), Mo (1:38%), Nb (1:34%), Rb (1:30%), Al (1:23%), Co (0:96%), Zn (0:95%), K (0:82%), Pb (0:58%), Dy (0:40%), Tb (0:38%), Sn (0:33%), V (0:24%), H (0:16%) (LE: 40:32%)

Match! Phase Analysis Report

Sample: Sample#U

Sample Data File name File path

Data collected Data range Original data range Number of points Step size Rietveld refinement converged Alpha2 subtracted Background subtr. Data smoothed 2theta correction Radiation Wavelength Sample#U.raw G:/.shortcut-targets-by-id/16KIMvpSIqVAUHFFggq9IVgYQzQybBTlu/Marwan - research/Concrete Mix Master Thesis/X-Ray/Birzeit University_XRD_Raw data Jul 13, 2023 08:25:35 4.940° - 89.940° 5.000° - 90.000° 4251 0.020 No No No No No No No X-rays

Analysis Results

Phase composition (Weight %)

1.540598 Å

Elemental composition (Weight %)

Index	Amoun	ntName	Formula sum	Element	Amount (weight %)
Δ	0.8	Tetrastrontium nonaoxotriniccolate	Ni3 O9 Sr4	P	12 1%
B	9.2	Sodium calcium pentafluoroaluminate fluoride - \$-beta	Al Ca F6 Na	F	10.6%(*)
C	3.5	Rubidium niobium tungsten oxide (12/30/3/90)	Nb30 090 Rb12 W3	Ca	8.3%
D	2.5	Rubidium niobium oxide phosphate (1/3/3/3)	Nb3 O15 P3 Rb	Ba	8.2%
F	14.0	Potassium tecto-phosphatovanadate(III) *	K 024 P7 V4	V	5.7%
F	3.1	Nonacaesium tecto-trialumononamolybdo(V)undecanhosphate(V)AI3 Cs9 Mo9 O59 P11	Nb	5.0%
G	3.3	Niobium thallium oxide hydrate (33/10 5/88 5/1 5)	H3 Nb33 O90 TI10 5	Fe	4 4%
Ĥ	2.8	Nickel divanadium oxide	Ni O6 V2	Ni	3.8%
- ï -	17	NIOBIUM THAI LIUM OXIDE (3 1/1/8 2)	Nb3 09 08 22 TI	Na	3.2%
j.	8 1	Iron phosphate fluoride hydroxide hydrate (1 2/1/0 5/0 2/0 4)	F0 45 Fe1 21 H0 92 O4 55 P	TI	2.1%
ĸ	4 1	Heptabarium copper hexairon(III) fluoride	Ba7 Cu F34 Fe6	AI	1.3%
Ë.	0.8	Dithallium distrontium copper oxide	Cu O6 Sr2 Tl2	Cs	1.1%
M	13.2	Disodium calcium bis(hydrogenphosphate(V))	Ca H2 Na2 O8 P2	Rb	0.9%
N	4.4	Dibarium oxovanadium(IV) bis(vanadate(V))	Ba2 O9 V3	Mo	0.8%
0	72	Dibarium octafluorotriniccolate decafluorotetraniccolate	Ba2 F18 Ni7		0.8%
P			As3 Br Cd2	As	0.8%
0	14 4	Calcium diphosphate - \b	Ca2 07 P2	ĸ	0.6%
R	0.9	Cadmium arsenide iodide (2/3/1)	As3 Cd2 I	Sr	0.6%
S	0.8	Barium silicate germanate *	Ba Ge3.125 O9 Si0.875	W	0.3%
T	4.1	Barium copper(II) iron fluoride (7/1/6/34)	Ba7 Cu F34 Fe6	Cu	0.3%
	1.7	Unidentified peak area		Ge	0.3%
				1	0.2%
Amour	nts calc	ulated by RIR (Reference Intensity Ratio) method		Br	0.1%
		· · · · · ·		H	0.1%(*)
				Si	
				*LE (sum)	39.1%

Details of identified phases

A: Tetrastrontium nonaoxotriniccolate (0.8 %)* Ni3 O9 Sr4 Formula sum Entry number 96-100-4110 Figure-of-Merit (FoM) 0.621800 Total number of peaks 281 281 Peaks in range 41 Peaks matched Intensity scale factor 0.15 Space group P321 Crystal system trigonal (hexagonal axes) Unit cell a= 9.4770 Å c= 7.8250 Å l/lc 4.86 Meas. density 5.400 g/cm³

Calc. density 5.488 g/cm³ Abraham F, Minaud S, Renard C, "Preliminary crystal structure of mixed-valency Sr4 Ni3 O9, the actual formula of the so-called Sr5 Ni4 O11", Journal of Materials Chemistry **4(11)**, 1763-1764 (1994) Reference

B: Sodium calcium pentafluoroaluminate fluoride - \$-

beta (9.2 %)	
Formula sum	Al Ca F6 Na
Entry number	96-100-0418
Figure-of-Merit (FoM)	0.629933*
Total number of peaks	189
Peaks in range	189
Peaks matched	23
Intensity scale factor	0.52*
Space group	P 3 2 1
Crystal system	trigonal (hexagonal axes)
Unit cell	a= 8.9295 Å c= 5.0642 Å
l/lc	1.50
Meas. density	2.880 g/cm³
Calc. density	2.906 g/cm ³
Reference	Hemon A, Courbion G, "The Na F - Ca F2 - Al F3 system: structures of \$-beta- Na Ca Al F6 andNa4 Ca4 Al7 F33", Journal of Solid State Chemistry 84, 153-164 (1990)

C: Rubidium niobium tungsten oxide (12/30/3/90) (3.5 %)*

Nb30 O90 Rb12 W3 96-100-1018 0.667095* 161 161 63 0.57* R -3 m

trigonal (hexagonal axes) a= 7.4860 Å c= 43.1000 Å

4.33 4.570 g/cm3 4.608 g/cm³

UNIUE (12/30/3/30) (3.3
Formula sum
Entry number
Figure-of-Merit (FoM)
Total number of peaks
Peaks in range
Peaks matched
Intensity scale factor
Space group
Crystal system
Unit cell
l/lc
Meas. density
Calc. density
Reference

D: Rubidium niobium oxide phos

phosphate (1/3/3/3) (2.5 %) [*]	
Formula sum	Nb3 O15 P3 Rb
Entry number	96-100-1462
Figure-of-Merit (FoM)	0.609247*
Total number of peaks	500
Peaks in range	500
Peaks matched	195
Intensity scale factor	0.19
Space group	Pnnm
Crystal system	orthorhombic
Unit cell	a= 13.3520 Å b= 14.7600 Å c= 6.4570 Å
l/lc	2.02
Calc. density	3.638 g/cm³
Reference	Borel M M, Benabbas A, Rebbah H, Grandin A, Leclaire A, Raveau B, "A large family of niobium phosphate bronzes and bronzoids withKNb~3~P~3~O~15~ structure", European Journal of Solid State Inorganic Chemistry 27 , 525-535 (1990)

O~90~ et A~12~ M~33~ O~90~(H~2~ O)~12~", Journal of Solid State Chemistry 22, 393-403 (1977)

Michel C, Guyomarch A, Raveau B, "Nouveaux echangeurs cationiques avec une structure a tunnelsentrecroises: les oxides A~12~ M~33~

E: Potassium tecto-

phosphatovanadate(III) * (14.	0 %)*
Formula sum	K O24 P7 V4
Entry number	96-100-1565
Figure-of-Merit (FoM)	0.672962*
Total number of peaks	499
Peaks in range	499
Peaks matched	230
Intensity scale factor	0.56*
Space group	P -1
Crystal system	triclinic (anorthic)
Unit cell	a= 10.0846 Å b= 10.2309 Å c= 10.8283 Å α= 112.757° β= 109.226 ° γ= 104.675 °
l/lc	1.05
Calc. density	3.202 g/cm³
Reference	Benhamada L, Grandin A, Borel M M, Leclaire A, Raveau B, "A vanadium(III) phosphate with V~2~O~10~ octahedral units:KV~4~P~7~O~24~", Journal of Solid State Chemistry 104, 193-201 (1993)

F: Nonacaesium tecto-

amolybdo(V)undecaphosphate(V) (3.1 %) [*]
	Al3 Cs9 Mo9 O59 P11
	96-100-1642
rit (FoM)	0.615763 [*]
of peaks	303
je	303
ed	116
e factor	0.29*
	P 63/m
n	hexagonal
	a= 16.9890 Å c= 11.8660 Å
	2.45
/	3.880 g/cm ³
	3.835 g/cm ³
	Guesdon A, Borel M M, Leclaire A, Grandin A, Raveau B, "An aluminophosphate of molybdenum(V) with a tunnel structure
	Cs9 Mo9Al3 P11 O59", Journal of Solid State Chemistry 114 , 451-458 (1995)
/	3.880 g/cm³ 3.835 g/cm³ Guesdon A, Borel M M, Leclaire A, Grandin A, Raveau B, "An aluminophosphate of molybdenum(V) with a tunnel struct Cs9 Mo9Al3 P11 O59", Journal of Solid State Chemistry 114 , 451-458 (1995)

Formula sum H3 Nb33 O90 TI10.5 Entry number 96-100-1006 Figure-of-Merit (FoM) 0.708818 Total number of peaks 161 Peaks in range 161 Peaks matched 70 Intensity scale factor 0.59 Space group R -3 m Crystal system trigonal (hexagonal axes) Unit cell a= 7.5100 Å c= 43.2900 Å 4.67 l/lc Calc. density 5.263 g/cm3 Reference

H: Nickel divanadium

oxide (2.8 %) Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell I/Ic Calc. density Reference

I: NIOBIUM THALLIUM OXIDE

(3.1/1/8.2) (1.7 %) Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell l/lc Calc. density Reference

J: Iron phosphate fluoride

hydroxide hydrate (1.2/1/0.5/0.2/0.4) (8.1 %)* Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell I/Ic Calc. density Reference

K: Heptabarium copper

hexairon(III) fluoride (4.1 %) Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell I/Ic Calc. density Reference

Gasperin M, "Synthese d'une nouvelle famille d'oxydes doubles: A~8~^+^ B~22~^5+^O~59~ structure du compose a thallium et niobium", Acta Crystallographica B (24,1968-38,1982) 33, 398-402 (1977)

Ni O6 V2 96-100-0095 0.600801 498 498 165 0.15 P -1 triclinic (anorthic) a= 7.1300 Å b= 4.7910 Å c= 8.8250 Å α= 90.160° β= 102.130 ° γ= 94.190 ° 1.43 4.349 g/cm³ Le Bail A, Lafontaine M A, "Structure determination of NiV~2~O~6~ from X-ray powder diffraction : arutile-ramsdellite intergrowth", European Journal of Solid State Inorganic Chemistry 27, 671-680 (1990)

Nb3.09 O8.22 TI 96-100-1011 0.612612 308 308 64 0.33 C 2 2 21 orthorhombic a= 7.5510 Å b= 13.0050 Å c= 7.7340 Å 5.07 5.448 g/cm³ Gasperin M, "Un niobate de thallium de type 'bronze hexagonal' excedentaire encations", Acta Crystallographica B (24, 1968-38, 1982) 33, 2306-2308 (1977)

F0.45 Fe1.21 H0.92 O4.55 P 96-100-0352 0.619690 121 121 19 0.75 I 41/a m d tetragonal a= 5.1840 Å c= 13.0400 Å 2 4 3 3.416 g/cm3 Loiseau Th, Lacorre Ph, Calage Y, Greneche J M, Ferey G, "Crystal structure and magnetic study of a new iron(III) phosphate, Fe~1.21~PO~4~X (X=F, OH, H~2~O), isostructural with 3MgSO~4~ .Mg(OH)~2~ . H~2~O", Journal of Solid State Chemistry 105, 417-427 (1993)

Ba7 Cu F34 Fe6 96-100-0279 0.612674 301 301 129 0.30 C 1 2/m 1 monoclinic a= 16.8920 Å b= 11.3310 Å c= 7.6460 Å β= 101.750 ° 1.95 4.649 g/cm³ Renaudin J, Ferey G, Drillon M, De Kozak A, Samouel M, "La structure magnetique du ferrimagnetique monodimensionnel Ba~7~ CuFe~6~ F~34~ de type jarlite", Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences, Serie C, Sciences Chimiques (1966-) 308, 1217-1222 (1989)

L: Dithallium distrontium copper

oxide (0.8 %) Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group

Cu O6 Sr2 Tl2 96-100-1523 0.602648 144 144 22 0.39 I 4/m m m

Crystal system Unit cell I/Ic Calc. density Reference

l/lc

tetragonal a= 3.7464 Å c= 22.3013 Å 13 06 7.889 g/cm³ Martin C, Maignan A, Huve M, Michel C, Hervieu M, Raveau B, "The influence of alkaline-earth ions on the properties of the"2201"superconductive cuprates: the solid solution TI~2~Ba~2-x~Sr~x~CuO~6+d~", European Journal of Solid State Inorganic Chemistry 30, 7-18 (1993)

M: Disodium calcium

bis(hydrogenphosphate(V)) (13.2 %) Ca H2 Na2 O8 P2 Formula sum 96-100-0141 Entry number Figure-of-Merit (FoM) 0.602568 Total number of peaks 497 Peaks in range 497 Peaks matched 118 Intensity scale factor 0.25 Space group P1211 Crystal system monoclinic Unit cell a= 9.0652 Å b= 7.1468 Å c= 5.4700 Å β= 98.782 ° 0.49 Calc. density 2.636 g/cm3 Reference Ben Chaabane T, Smiri-Dogguy L, Laligant Y, Le Bail A, "Structure of Na2 Ca (H P O4)2 determined ab initio from conventionalpowder diffraction data", European Journal of Solid State Inorganic Chemistry 34, 937-946 (1997)

N: Dibarium oxovanadium(IV)

DIS(Vanadate(V)) (4.4 %)	
Formula sum	Ba2 O9 V3
Entry number	96-100-4117
Figure-of-Merit (FoM)	0.648747 [*]
Total number of peaks	499
Peaks in range	499
Peaks matched	112
Intensity scale factor	0.56*
Space group	P 1 21/m 1
Crystal system	monoclinic
Unit cell	a= 9.3020 Å b= 5.9690 Å c= 8.1180 Å β= 113.9
l/lc	3.34
Meas. density	4.650 g/cm ³
Calc. density	4.607 g/cm ³
Reference	Dhaussy A-C. Abraham F. Mentre O. Steinfink

960 ° H, "Crystal structure and characterization of Ba2 V3 O9: a vanadyl(IV)vanadate containing rutilelike chains of V O6 octahedra", Journal of Solid State Chemistry 126, 328-335 (1996)

O: Dibarium octafluorotriniccolate

decafluorotetraniccolate (7.2 %) Ba2 F18 Ni7 Formula sum 96-100-0250 Entry number Figure-of-Merit (FoM) 0.621887 Total number of peaks 500 Peaks in range 500 Peaks matched 179 Intensity scale factor 0.46 Space group P -1 Crystal system triclinic (anorthic) a= 6.9240 Å b= 7.2180 Å c= 7.4370 Å α= 94.390° β= 93.200 ° γ= 115.820 ° Unit cell I/Ic 1.67 5.139 g/cm³ Calc. density Renaudin J, Ferey G, Kozak A, Samouel M, Lacorre P, "Crystal and magnetic structures of the ferrimagnet Ba~2~ Ni~7~ F~18~", Solid State Reference Communications 65, 185-188 (1988)

P: DICADMIUM TRIARSENIDE

BROMIDE (1.0 %) As3 Br Cd2 Formula sum Entry number 96-100-1295 Figure-of-Merit (FoM) 0.603130 Total number of peaks 284 284 Peaks in range Peaks matched 70 Intensity scale factor 0.21 Space group C1c1 Crystal system monoclinic a= 8.2860 Å b= 9.4080 Å c= 7.9870 Å β= 101.300 ° Unit cell 5.61 Calc. density 5.760 g/cm3 Rebbah A, Yazbeck J, Lande R, Deschanvres A, "Etudes structurales et optiques des phases du type Cd~2~ A~3~ X (A = As, P", Materials Reference Research Bulletin 16, 525-533 (1981)

Q: Calcium diphosphate -

I/Ic

\b (14.4 %) Formula sum Ca2 07 P2 Entry number 96-100-1557 Figure-of-Merit (FoM) 0.634388 Total number of peaks 328 328 Peaks in range Peaks matched 96 Intensity scale factor 0.41 Space group P 41 Crystal system tetragonal Unit cell a= 6.6858 Å c= 24.1470 Å l/lc 0.74 Calc. density 3.127 g/cm³ Reference Boudin S., Grandin A., Borel M. M., Leclaire A., Raveau B., "Redetermination of the \b-Ca~2~P~2~O~7~ structure", Acta Crystallographica, Section C: Crystal Structure Communications 49(12), 2062-2064 (1993)

(2/3/1) (0.9 %) Formula sum As3 Cd2 I Entry number 96-100-1838 Figure-of-Merit (FoM) 0.609625* Total number of peaks 286 Peaks in range 286 Peaks matched 92 Intensity scale factor 0.23 Space group C1c1 Crystal system monoclinic Unit cell a= 8.4360 Å b= 9.5940 Å c= 7.9520 Å β= 100.650 ° l/lc 6.49 Calc. density 6.053 g/cm³ Rebbah A, Leclaire A, Yazbeck J, Deschanvres A, "Structure de l'iodure de cadmium et d'arsenic Cd2 As3 I", Acta Crystallographica B (24,1968-38,1982) 35, 2197-2199 (1979) Reference S: Barium silicate germanate * (0.8 %)*

Formula sum Ba Ge3.125 O9 Si0.875 Entry number 96-100-1067 Figure-of-Merit (FoM) 0.615863 Total number of peaks 275 Peaks in range 275 Peaks matched 70 Intensity scale factor 0.13 Space group P31c Crystal system Unit cell trigonal (hexagonal axes) a= 11.5950 Å c= 9.7550 Å l/lc 4.55 Meas. density 4.660 g/cm3 Calc. density 4.673 g/cm3 Goreaud M, Choisnet J, Deschanvres A, Raveau B, "Synthese et Evolution Structurale de Nouveaux Silicogermanates Ba Ge(Ge~3-x~ Si~x~) O~9~ de Type Benitoite et de Structure Apparentee", Materials Research Bulletin 8, 1205-1214 (1973) Reference

T: Barium copper(II) iron fluoride

(7/1/6/34) (4.1 %)	
Formula sum	Ba7 Cu F34 Fe6
Entry number	96-100-0221
Figure-of-Merit (FoM)	0.607397*
Total number of peaks	301
Peaks in range	301
Peaks matched	137
Intensity scale factor	0.31*
Space group	C 1 2/m 1
Crystal system	monoclinic
Unit cell	a= 16.9820 Å b= 11.3720 Å c= 7.6630 Å β= 101.470 °
l/lc	1.96
Calc. density	4.593 g/cm ³
Reference	Renaudin J, Ferey G, Kozak A de, Samouel M, "Fluorures complexes de cuivre(II). VI. Structure cristalline de Ba~7~Cu Fe~6~ F~34~", Revue de Chimie Minerale 24, 295-304 (1987)

(*)2theta values have been shifted internally for the calculation of the amounts, the intensity scaling factors as well as the figure-of-merit (FoM), due to the active search-match option 'Automatic zero point adaption'.

Search-Match

Settings	
Reference database used	COD-Inorg 2023.06.06
Automatic zeropoint adaptation	Yes
Downgrade entries with low scaling factors	Yes
Minimum figure-of-merit (FoM)	0.60
2theta window for peak corr.	0.30 deg.
Minimum rel. int. for peak corr.	0
Parameter/influence 2theta	0.50
Parameter/influence intensities	0.50
Parameter multiple/single phase(s)	0.50

Peak List

No.	2theta [°]	d [Å]	l/l0 (peak height)	Counts (peak area)	FWHM	Matched
1	18.04	4.9133	72.16	63.17	0.1600	D,E,F,H,I,K,M,N,S,T
2	20.86	4.2550	219.18	95.94	0.0800	B,D,E,F,H,M,N,T
3	23.06	3.8538	24.50	26.81	0.2000	B,D,E,F,H,I,K,T
4	24.02	3.7019	14.01	9.20	0.1200	C,D,E,F,H,K,L,M,N,O,Q,S,T
5	26.62	3.3459	1000.00	656.58	0.1200	B,C,D,E,F,G,H,I,J,K,L,M,N,O,Q,S,T
6	27.46	3.2455	55.43	36.39	0.1200	C,D,E,F,G,H,I,J,K,T
7	27.72	3.2156	12.46	10.91	0.1600	C,D,E,F,G,J,M,O,Q,T
8	28.64	3.1144	15.63	17.10	0.2000	A,C,D,E,F,G,H,K,N,O,P,Q,R,S,T
9	29.40	3.0356	184.83	202.26	0.2000	A,C,D,E,G,H,I,O,P,Q,R,T
10	30.92	2.8897	91.33	99.95	0.2000	A,C,D,E,F,G,H,K,L,M,N,Q,S,T
11	32.14	2.7828	41.77	73.14	0.3200	C,E,F,G,K,L,M,N,O,P,Q,R,S,T
12	32.54	2.7495	31.43	27.51	0.1600	A,D,E,F,K,M,N,O,Q,S,T
13	32.88	2.7218	9.68	10.59	0.2000	D,E,F,H,I,K,M,P,R,S,T
14	34.08	2.6287	50.04	54.75	0.2000	A,D,E,F,H,K,L,M,P,R
15	36.00	2.4927	21.28	13.97	0.1200	A,C,D,E,F,G,H,I,K,M,N,O,Q,S,T
16	36.54	2.4571	90.39	39.56	0.0800	C,D,E,F,G,H,I,K,M,N,O,R,S,T
17	39.44	2.2829	79.87	87.41	0.2000	A,B,C,D,E,F,G,H,J,K,M,N,O,P,Q,R,T
18	40.28	2.2372	57.99	25.38	0.0800	A,B,C,D,E,F,G,H,K,L,M,N,O,P,Q,S,T
19	41.14	2.1924	28.89	37.94	0.2400	A,B,D,E,F,H,K,M,N,O,Q,S,T
20	42.44	2.1282	44.41	29.16	0.1200	B,C,D,E,F,G,H,I,K,M,N,O,Q,S,T
21	43.14	2.0953	22.47	24.59	0.2000	D,E,F,G,H,I,K,M,N,O,Q,R,S,T
22	44.88	2.0180	10.70	4.68	0.0800	A,C,D,E,F,G,H,I,J,K,M,N,O,P,Q,R,S,T
23	45.78	1.9804	41.11	26.99	0.1200	A,B,C,D,E,F,G,H,K,N,Q,R,S,T
24	47.44	1.9149	24.77	27.11	0.2000	B,C,D,E,F,G,H,K,L,M,N,O,P,R,S,T
25	48.54	1.8740	25.16	33.05	0.2400	A,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T
26	50.12	1.8186	185.70	81.28	0.0800	A,C,D,E,F,G,H,I,K,M,N,O,P,S,T
27	50.54	1.8045	12.72	61.26	0.8800	A,B,C,D,E,F,G,H,I,K,M,N,O,P,Q,R,S,T
28	54.86	1.6721	36.44	23.92	0.1200	B,C,D,E,F,G,H,K,L,M,N,O,P,Q,R,S,T

29	55.32	1.6593	9.76	8.55	0.1600	A,C,D,E,F,G,H,I,J,K,M,N,O,Q,R,T
30	56.62	1.6243	19.71	8.63	0.0800	A,C,D,E,F,G,H,I,J,K,M,N,O,P,Q,S,T
31	57.42	1.6035	10.09	11.04	0.2000A	A,B,C,D,E,F,G,H,I,J,K,M,N,O,P,Q,R,S,T
32	59.94	1.5420	141.28	92.76	0.1200	A,B,D,E,F,H,K,M,N,O,P,Q,R,S,T
33	60.10	1.5383	57.41	25.13	0.0800	A,B,D,E,F,G,H,K,M,N,O,P,Q,R,T
34	60.70	1.5245	10.44	43.40	0.7600	A,C,D,F,G,H,I,K,L,M,N,O,Q,R,S,T
35	62.36	1.4878	9.64	12.66	0.2400	A,B,C,D,F,G,H,I,K,L,M,N,O,P,Q,R,S
36	64.04	1.4528	16.95	11.13	0.1200	A,B,C,D,F,G,H,J,K,M,N,O,P,Q,R,S,T
37	65.78	1.4185	9.90	2.17	0.0400	A,C,D,F,G,H,I,K,M,N,O,P,Q,R,S,T
38	67.72	1.3825	82.41	36.07	0.0800	C,D,F,G,H,L,M,N,O,P,Q,R,S
39	67.90	1.3793	39.56	25.98	0.1200	A,C,D,F,G,H,I,J,M,N,O,P,R,S
40	68.30	1.3722	96.00	63.03	0.1200	C,D,F,H,I,M,N,O,Q
41	68.48	1.3690	37.49	16.41	0.0800	A,C,D,F,G,H,J,L,M,N,O,P,Q,R,S
42	73.44	1.2883	14.21	6.22	0.0800	A,B,C,D,G,H,I,L,M,N,O,P,Q,R,S
43	75.64	1.2562	26.95	11.80	0.0800	A,D,G,H,I,J,M,N,O,P,R,S
44	77.64	1.2288	19.43	8.50	0.0800	A,D,H,I,J,L,M,N,O,P,Q,R,S
45	80.02	1.1981	16.72	14.63	0.1600	A,D,H,I,J,L,M,O,P,Q,R,S
46	81.42	1.1810	31.97	20.99	0.1200	A,D,H,I,M,N,O,P,Q,R
47	81.68	1.1779	11.12	7.30	0.1200	A,B,D,H,I,L,M,N,O,P,Q,R,S
48	83.82	1.1532	30.87	13.51	0.0800	D,H,I,J,M,N,O,P,Q,R,S
49	84.08	1.1503	17.33	7.59	0.0800	B,D,H,I,M,N,O,P,Q,R,S

Integrated Profile Areas

Based on calculated profile

Profile area	Counts	Amount
Overall diffraction profile	649579	100.00%
Background radiation	447175	68.84%
Diffraction peaks	202404	31.16%
Peak area belonging to selected phases	191644	29.50%
Peak area of phase A (Nickel divanadium oxide)	4099	0.63%
Peak area of phase B (Disodium calcium bis(hydrogenphosphate(V)))	10619	1.63%
Peak area of phase C (Barium copper(II) iron fluoride (7/1/6/34))	10092	1.55%
Peak area of phase D (Dibarium octafluorotriniccolate decafluorotetraniccolate)	15827	2.44%
Peak area of phase E (Heptabarium copper hexairon(III) fluoride)	12084	1.86%
Peak area of phase F (Iron phosphate fluoride hydroxide hydrate (1.2/1/0.5/0.2/0.4))	10714	1.65%
Peak area of phase G (Sodium calcium pentafluoroaluminate fluoride - \$-beta)	12679	1.95%
Peak area of phase H (Niobium thallium oxide hydrate (33/10.5/88.5/1.5))	13594	2.09%
Peak area of phase I (NIOBIUM THALLIUM OXIDE (3.1/1/8.2))	5978	0.92%
Peak area of phase J (Rubidium niobium tungsten oxide (12/30/3/90))	13562	2.09%
Peak area of phase K (Barium silicate germanate *)	2476	0.38%
Peak area of phase L (DICADMIUM TRIARSENIDE BROMIDE)	4410	0.68%
Peak area of phase M (Rubidium niobium oxide phosphate (1/3/3/3))	6925	1.07%
Peak area of phase N (Dithallium distrontium copper oxide)	6658	1.03%
Peak area of phase O (Calcium diphosphate - \b)	15116	2.33%
Peak area of phase P (Potassium tecto-phosphatovanadate(III) *)	15455	2.38%
Peak area of phase Q (Nonacaesium tecto-trialumononamolybdo(V)undecaphosphate(V))	10955	1.69%
Peak area of phase R (Cadmium arsenide iodide (2/3/1))	3898	0.60%
Peak area of phase S (Tetrastrontium nonaoxotriniccolate)	2719	0.42%
Peak area of phase T (Dibarium oxovanadium(IV) bis(vanadate(V)))	13783	2.12%
Unidentified peak area	10760	1.66%

Peak Residuals

Peak data	Counts	Amount
Overall peak intensity	2348	100.00%
Peak intensity belonging to selected phases	2348	100.00%
Unidentified peak intensity	0	0.00%

Diffraction Pattern Graphics

Match! Copyright © 2003-2023 CRYSTAL IMPACT, Bonn, Germany

Amounts of Phases and Elements (Weight %)

Phase composition:

Calcium diphosphate - \b (14,4%), Potassium tecto-phosphatovanadate(III) * (14.0%), Disodium calcium bis(hydrogenphosphate(V)) (13.2%), Sodium calcium pentafluorooluminate fluoride - S-beta (9.2%), Iron phosphate fluoride hydroxide hydrate (1.2/1/0.5/0.2/0.4) (8.1%), Dibarium octafluorotriniccolate decafluorotetraniccolate (7.2%), Dibarium ozovanadium(IV) bis(vanadate(V)) (4.4%), Barium copper(II) iron fluoride (7/1/6/34) (4.1%), Heptabarium copper hexairon(III) fluoride (4.1%), Rubidium niobium tungsten oxide (12/30/3/90) (3.5%), Niobium thallium oxide hydrate (33/10.5/88.5/1.5) (3.3%), Nonacaesium tecto-trialumononamolybdo(V)undecaphosphate(V) (3.1%), Nickel divanadium oxide (2.8%), Rubidium niobium oxide phosphate (1/3/3/3) (2.5%), NIOBIUM THALLIUM OXIDE (3.1/1/8.2) (1.7%), DICADMIUM TRIARSENIDE BROMIDE (1.0%), Cadmium arsenide iodide (2/3/1) (0.9%), Tetrastrontium nonaoxotriniccolate (0.8%), Dithallium distrontium copper oxide (0.8%), Barium silicate germanate * (0.8%)

Elemental composition:

O (28.37%), P (12.08%), F (10.58%), Ca (8.25%), Ba (8.19%), V (5.67%), Nb (5.00%), Fe (4.40%), Ni (3.75%), Na (3.22%), Ti (2.07%), Al (1.29%), Cs (1.09%), Rb (0.92%), Mo (0.79%), Cd (0.78%), As (0.78%), K (0.65%), Sr (0.62%), W (0.33%), Cu (0.33%), Ge (0.32%), I (0.21%), Br (0.15%), H (0.14%), Si (0.04%) (LE: 39.08%)

Sample No. 1

Sample No. 3

mag 🗆 40 000 v

10.00 kV 3.0 12.0 mm 20 000 x JUST Nano Ins

Sample No. 7

10.00 kV 3.0 10.4 mm 20 000 x JUST Nanc

Sample No. B

HV spot WD mag □ 10.00 kV 3.0 11.8 mm 40 000 x

JUST N

SE

Sample No. G

Sample No. H

WD

mag
20,000 x

ILIST N

HV spot WD mag 10.00 kV 3.0 11.8 mm 40 000 x

SE

Sample No. J

Sample No. N

Sample No. O

Sample No. R

nag 🗆

WE

Sample No. U

Sample No. X

Appendix C: MATLAB output images

